CARACTERÍSTICAS DAS COMUNIDADES BENTÔNICAS DA ELEVAÇÃO DO RIO GRANDE, ATLÂNTICO SUL-OCCIDENTAL E SUAS IMPLICAÇÕES PARA EXPLORAÇÃO MINERAL E CONSERVAÇÃO

ITAJAÍ, 2017
ANGÉLICA MAFFINI MASTELLA

CARACTERÍSTICAS DAS COMUNIDADES BENTÔNICAS DA ELEVAÇÃO DO RIO GRANDE, ATLÂNTICO SUL-OCIDENTAL E SUAS IMPLICAÇÕES PARA EXPLORAÇÃO MINERAL E CONSERVAÇÃO

Dissertação submetida ao Programa de Pós-Graduação em Ciência e Tecnologia Ambiental – UNIVALI, como requisito parcial à obtenção do título de Mestre em Ciência e Tecnologia Ambiental.

ORIENTADOR: Prof. Dr. José Angel Alvarez Perez

ITAJAÍ, 2017
AGRADECIMENTOS

Ao meu professor Dr. José Angel Alvarez Perez, pela sua orientação, que, novamente, me acompanhou no meu trabalho, e pela paciência nos seus ensinamentos.

Aos avaliadores e grandes professores que tive, Drs. José Gustavo Natorf de Abreu e Tito Cesar Marques de Almeida me auxiliando durante a realização da minha dissertação.

Aos professores Drs. Paulo Ricardo Pezzuto e Antônio Carlos Beaumord pelo auxílio durante a execução do trabalho.

Ao Programa Bilateral Brasil-Japão e o Consórcio “Iata-Piuná” (Japan Agency for Marine-Earth Science and Technology – JAMSTEC; Instituto Oceanográfico da Universidade de São Paulo – IOUSP; Serviço Geológico do Brasil - CPRM) responsável pela realização expedição ao Atlântico SO e pelo registro e disponibilização imagens dos habitats bentônicos suas áreas profundas. A toda a tripulação do NPq Yokosuka e particularmente do Shinkai 6500 pelo excelente trabalho e grande espírito de colaboração.

À colaboração dos taxonomistas do Museu Nacional - UFRJ, Dr. Eduardo Hajdu, Dra. Irene Cardoso, Dra. Débora Pires e Dr. Renato Ventura, e do bentólogo de mar profundo Dr. Paulo Yukio Gomes Sumida (IOUSP), que também dedicou tempo para correção do meu trabalho como avaliador.

À minha família, que esteve sempre presente me apoiando para ir em busca dos meus objetivos.
SUMÁRIO

AGRADECIMENTOS..i
SUMÁRIO...ii
LISTA DE FIGURAS..iv
LISTA DE TABELAS...vii
RESUMO..ix
ABSTRACT..xi
1. INTRODUÇÃO..1
 1.1 A ELEVAÇÃO DO RIO GRANDE...3
 1.2 A EXPEDIÇÃO “IATA-PIUNA”...6
2. OBJETIVOS..8
 2.1 OBJETIVO GERAL...8
 2.2 OBJETIVOS ESPECÍFICOS..8
3. MATERIAIS E MÉTODOS..9
 3.1 ÁREA DE ESTUDO E OS PONTOS DE EXPLORAÇÃO SUBMARINA...............10
 3.2 PERFIS DE VÍDEO...11
 3.3 PROCESSAMENTO DE IMAGENS...11
 3.3.1 ANÁLISE QUALITATIVA..11
 3.3.2 ANÁLISE QUANTITATIVA..14
 3.4 ANÁLISE DOS DADOS...17
 3.4.1 QUALITATIVOS...17
 3.4.2 QUANTITATIVOS..17
 3.4.2.1 DENSIDADE...17
 3.4.2.2 DIVERSIDADE...18
 3.4.2.2.1 DIVERSIDADE α...18
 3.4.2.2.2 DIVERSIDADE β...20
 3.4.2.3 ANÁLISE DAS COMUNIDADES..21
 3.4.3 MODELO PARA ANÁLISE DE RISCO DAS ATIVIDADES DE
 EXPLORAÇÃO NA ERG...22
 3.4.3.1 CRITÉRIOS DE RESILIÊNCIA E SUSCEPTIBILIDADE E SEUS
 NÍVEIS DE QUALIFICAÇÃO...26
 3.4.3.1.1 RESILIÊNCIA (U_R)...26
 3.4.3.1.2 SUSCEPTIBILIDADE (S)...30
 3.4.3.1.3 ESTIMATIVA DA VULNERABILIDADE RELATIVA (V)...............34
4. RESULTADOS...37
 4.1 HABITATS BENTÔNICOS DE ALFA...37
 4.2 COMUNIDADES DA MEGAFAUNA BENTÔNICA DE ALFA.............................41
 4.2.1 ANÁLISE DESCRIPTIVA..41
 4.2.2 PADRÕES ECOLÓGICOS...44
 4.2.2.1 DENSIDADE DOS ORGANISMOS DA MEGAFAUNA.................44
4.2.2.2 DIVERSIDADE α...46
4.2.2.3 ANÁLISE DA COMPOSIÇÃO DA MEGAFANA BENTÔNICA......47
 4.2.2.3.1 DIVERSIDADE β...54
4.3 MODELO PARA ANÁLISE DE RISCO DAS ATIVIDADES DE EXPLORAÇÃO NA ERG..58
5. DISCUSSÃO..64
 5.1 HABITATS E COMUNIDADES...64
 5.2 SENSIBILIDADE DAS COMUNIDADES À EXPLORAÇÃO GEOLÓGICA....70
6. CONCLUSÕES...74
REFERÊNCIAS BIBLIOGRÁFICAS..75
APÊNDICE..81
LISTA DE FIGURAS

Figura 3. Trajetória dos perfis (A) 6K1338, (B) 6K1339 e (C) YKDT-157 na Elevação do Rio Grande projetados sobre as linhas batimétricas obtidas pelo mapeamento por ecossonda multifeixe. A estrela demarca o local de início da trajetória..........................10

Figura 4. Demonstração dos equipamentos utilizados e da coleta do submersível Shinkai 6500 (A) e do veículo rebocado YKDT (B)...13

Figura 5. Um exemplo de uma imagem oblíqua, enfatizando a metade inferior da imagem, (a). Diagrama trapezoidal que aparece na metade inferior da imagem, (b). Onde: O, origem (lente da câmera do submersível); C, centro de imagem; OC, distância do centro da lente para a imagem; OH, distância da lente para o fundo; θ, ângulo de incidência; α, ângulo de abertura vertical da câmera; e β, ângulo de abertura horizontal da câmera. Figura gerado por Nakajima et al (2014)...............16

Figura 6. Interpretação do diagrama ternário com os componentes a’, b’ e c’. Imagem reproduzida de Koleff et al. (2003)...21

Figura 7. Exemplo dos equipamentos que necessitam de avaliações de impacto de acordo com isba/19/ltc/8. (A) Redes de arrasto; (B) Draga geológica; (C) Rock-drill. (Figuras retiradas do Pedido de Aprovação de um Plano de Trabalho para Exploração e para Obtenção de Contrato, CPRM, 2014)...24

Figura 8. Gráfico bi-dimensional de Produtividade (no meu caso resiliência - eixo x e susceptibilidade - eixo y. As maiores médias de (Uk) estiveram posicionadas próximo do eixo y. No eixo y, uma média baixa de (s) esteve posicionada próximo ao eixo x..............35

Figura 9. Habitats diferenciados ao longo do percurso do perfil 6K1338 do submersível Shinkai 6500 sobre o platô de Alfa, Elevação do Rio Grande.................................39

Figura 10. Habitats diferenciados ao longo do percurso do perfil 6K1339 do submersível Shinkai 6500 sobre o platô de Alfa, Elevação do Rio Grande.................................40

Figura 11. Habitats diferenciados ao longo do percurso do perfil YKDT157 da câmera rebocada profunda YKDT, sobre o platô de Alfa, Elevação do Rio Grande..................40
Figura 12. Número de morfotipos visualizados nos perfis 6K1338, 6K1339 e YKDT157 realizados pelo submersível Shinkai 6500 e a câmera rebocada profunda YKDT no platô de Alfa, Elevação do Rio Grande, agrupados pelos grupos zoológicos (Filos).........................41

Figura 13. Frequência de ocorrência de morfotipos da megafauna bentônica no perfil de vídeo 6K1338 do submersível Shinkai 6500, sobre o platô de Alfa, Elevação do Rio Grande. As frequências são agrupadas por habitat e grupo zoológico considerado.................................42

Figura 14. Frequência de ocorrência de morfotipos da megafauna bentônica no perfil de vídeo 6K1339 do submersível Shinkai 6500, sobre o platô de Alfa, Elevação do Rio Grande. As frequências são agrupadas por habitat e grupo zoológico considerado.................................41

Figura 15. Frequência de ocorrência de morfotipos da megafauna bentônica no perfil de vídeo YKDT157 da câmera rebocada YKDT, sobre o platô de Alfa, Elevação do Rio Grande. As frequências são agrupadas por habitat e grupo zoológico considerado.................................44

Figura 16. Distribuição das densidades amostrais dos organismos da megafauna bentônica nos perfis 6K1338 e 6K1339 realizados pelo submersível Shinkai 6500 sobre o platô de Alfa, Elevação do Rio Grande. A, comparação das densidades dos perfis 6K1338 e 6K1339; B, comparação das densidades dos habitats do perfil 6K1338; C, comparação das densidades dos habitats do perfil 6K1339.................................46

Figura 17. Curvas de rarefação de morfotipos construídas para os perfis 6K1338 e 6K1339 e seus habitats..48

Figura 18. Curvas de Dominância de morfotipos da megafauna bentônica construídas para os habitats dos perfis 6K1338 e 6K1339..49

Figura 19. Escalonamento Multidimensional Não-métrico (MDS) das amostras extraídas dos perfis de vídeo 6K1338 e 6K1339 obtidas pelo submersível Shinkai 6500 sobre o platô de Alfa, Elevação do Rio Grande, diferenciadas de acordo com o habitat de onde foram provenientes..50

Figura 20. Dendrograma resultante da análise de Agrupamento das amostras extraídas dos perfis de vídeo 6K1338 e 6K1339 obtidas pelo submersível Shinkai 6500 sobre o platô de Alfa, Elevação do Rio Grande, diferenciadas de acordo com o habitat de onde foram provenientes.54

Figura 21. Diagrama Ternário representando a comparação entre amostras dos dos perfis 6K1338 (esquerda) e 6K1339 (direita), quanto a composição de morfotipos da megafauna bentônica..56

Figura 22. Diagrama Ternário representando a comparação entre amostras dos habitats 1 e 2 do perfil 6K1338 (A), habitats 2 e 3 do perfil 6K1338 (B), habitats 3 e 4 do perfil 6K1338 (C), quanto a composição de morfotipos da megafauna bentônica..57

Figura 23. Diagrama Ternário representando a comparação entre amostras dos habitats 5 e 6 do perfil 6K1339, quanto a composição de morfotipos da megafauna bentônica.................58

Figura 24. Distribuição espacial dos trechos dos habitats explorados ao longo dos perfis
6K1338 e 6K1339 no platô de Alfa, Elevação do Rio Grande, de acordo com escores de Resiliência, Suscetibilidade e vulnerabilidade às atividades de exploração de CFRCs. A, análise onde os critérios dos dois eixos tiveram pesos iguais; B, análise com atribuição de pesos aos critérios de acordo com percepção de importância dos mesmos.

Figura 25. Perfil 6K1338 no platô de Alfa, Elevação do Rio Grande com indicação dos níveis de vulnerabilidade dos trechos de cada habitat, delimitados por linhas verticais. A, análise do perfil onde tivera pesos iguais; B, análise do perfil com atribuição de pesos de acordo com percepção de importância dos mesmos.

Figura 26. Perfil 6K1339 no platô de Alfa, Elevação do Rio Grande com indicação dos níveis de vulnerabilidade dos trechos de cada habitat, delimitados por linhas verticais. A, análise do perfil onde tivera pesos iguais; B, análise do perfil com atribuição de pesos de acordo com percepção de importância dos mesmos.
LISTA DE TABELAS

Tabela 1. Sumário dos perfis analisados da ERG..9

Tabela 2. Atividades incluídas no plano de trabalho atividades de exploração de CFRCs na elevação do rio grande. As atividades que necessitam (em vermelho) e não necessitam (verde) de avaliações de impacto são indicadas de acordo com isba/19/ltc/8. (tabela retirada do Pedido de Aprovação de um Plano de Trabalho para Exploração e para Obtenção de Contrato, CPRM, 2014)..23

Tabela 3. Definição dos critérios de resiliência. Inclui-se sua definição, sua importância, indicador e a orientação desse critério..27

Tabela 4. Os Critérios de resiliência e seus respectivos níveis de qualificação estimados para pontuar e determinar a resiliência dos trechos representantes da Elevação do Rio Grande..30

Tabela 5. Definição dos critérios de Susceptibilidade. Inclui-se sua definição, sua importância, indicador e a orientação desse critério..32

Tabela 6. Os critérios de susceptibilidade e seus respectivos níveis de qualificação estimados para pontuar e determinar a susceptibilidade dos trechos representantes da Elevação do Rio Grande..34

Tabela 7. Sumário das imagens extraídas e utilizadas para análise da megafauna bentônica no platô de Alfa, Elevação do Rio Grande...38

Tabela 8 – Valores de probabilidade p para os testes Kruskal-Wallis e Mann-Whitney comparando as densidades dos organismos da megafauna bentônica dos perfis 6K1338 e 6K1339 e seus habitats..45

Tabela 9 – Índices de diversidade e equitabilidade para os habitats dos perfis 6K1338 e 6K1339. Inclui-se os Índices de Simpson, Shannon e Equitabilidade..47

Tabela 10. Análise do efeito dos habitats, tipos de substrato e estratos de profundidade na composição da megafauna bentônica nos perfis 6K1338 e 6K1339 realizados pelo submersível Shinkai 6500 sobre o platô de Alfa, Elevação do Rio Grande. GL, graus de liberdade, SQ, soma dos quadrados; QM, quadrado médio; F, valor da estatística F; P, probabilidade..51

Tabela 11. Similaridade percentual da composição de morfotipos das amostras dos perfis 6K1338 e 6K1339 (Análise SIMPER) agrupados por habitats, tipo de substrato e estrato de profundidade..53

Tabela 12. Dissimilaridade percentual da composição de morfotipos das amostras dos perfis 6K1338 e 6K1339 (Análise SIMPER). Comparação entre os níveis dos fatores habitats, tipos de substrato e estrato de profundidade..54

Tabela 13. Valores do índice de Sorensen comparando o nível de alteração da composição de morfotipos da megafauna bentônica entre os habitats dos perfis 6K1338 e 6K1339 realizados pelo submersível Shinkai 6500 sobre o platô de Alfa, Elevação do Rio Grande. Valores em
negrito correspondem a habitats adjacentes...55

Tabela 14. Média dos pesos atribuídos por cada pesquisador para os critérios de Resiliência e Suscetibilidade. 1= importância menor, 2= importância intermediária e 3= maior importância...61

Tabela 15. Densidades máximas de organismos da megafauna bentônica no platô de Alfa comparadas com valores reportados para análises de perfis de vídeo em outras montanhas submarinas do planeta...67
RESUMO

A Elevação do Rio Grande (ERG) é uma feição topográfica de grandes dimensões e geomorfologia complexa, cujo gênese envolveu diversos eventos geológicos de grande escala, incluindo vulcanismo, subsidência e erosão em superfície. Esta feição é localizada na planície abissal do Brasil (Atlântico SO) na área delimitada pelas latitudes 28° – 33°S e as longitudes 29° – 39°O. A porção oeste da ERG, conhecida como Alfa, envolve um maciço de 140.615 km² de extensão, cujo cume atinge 600 metros de profundidade e tem forma de platô modificado por uma depressão central de 1200 m de profundidade, que corta a superfície da estrutura no sentido NO - SE. Em 2013, Alfa foi alvo da exploração científica no contexto de um acordo de cooperação bilateral Brasil – Japão, conhecido como “Iata-Piuna” (JAMSTEC, IOUSP, CPRM), realizada a bordo do Npq. Yokosuka e que promoveu uma série de mergulhos profundos do submersível tripulado Shinkai 6500. Neste trabalho foram utilizados perfis de vídeo obtidos durante dois mergulhos com Shinkai 6500 (30°22'48"S - 36°02'29"O e 31°05'41"S - 34°02'21"O) e de um mergulho com o veículo rebocado YKDT157 (30°05'45"S - 34°17'34"O). A análise destes vídeos demonstrou uma diversidade considerável de habitats, cuja megafauna bentônica foi dominada por cnidários (61% dos morfotipos) e poríferos (8% dos morfotipos). A densidade da megafauna variou em diferentes escalas espaciais, sendo maior na porção noroeste de Alfa e muito baixa na porção sudeste. Também foi superior em habitats mais rasos (~ 600 m) e na borda e parede da depressão central. A riqueza de morfotipos da megafauna bentônica observada nos perfis de Alfa foi relativamente alta, com um total de 172 morfotipos observados ao longo de 8 km percorridos. Nas áreas de maior densidade ressaltadas acima, a diversidade foi relativamente baixa devido a dominância de alguns organismos suspensívoros, particularmente o porífero Sarostegia oculata. Nas áreas de menor densidade a distribuição de morfotipos foi mais equitativa. Infere-se que a porção NO de Alfa esteja sujeita a maior advecção de partículas em suspensão devido a elevada dinâmica de correntes profundas. Nesse sentido, estas áreas sustentam maior concentração de vida bentônica, dominada por algumas espécies particularmente aptas ao aproveitamento deste aporte de energia numa região eminentemente pobre do Atlântico Sul. As comunidades biológicas nas montanhas submarinas enfrentam uma série de ameaças de atividades humanas, uma delas é a exploração de crostas ferromanganeseíferas ricas em cobalto. Neste trabalho foi criado um modelo para análise de risco das atividades de exploração capaz de
avaliar, a partir de elementos visualizados em perfis de vídeo, a vulnerabilidade de diferentes áreas e habitats bentônicos à estas atividades. Este modelo apresenta-se como uma opção robusta para estudos futuros que envolvam os processos de gestão das fases de exploração ou até mesmo de explotação da ERG. Estes processos deverão levar em consideração a heterogeneidade espacial de habitats presentes em Alfa e, em particular, a elevada diversidade-beta associada.

Palavras-Chave: Atlântico SO, ecologia de montanhas submarinas, Elevação do Rio Grande, megafauna bentônica.
ABSTRACT

The Rio Grande Rise (RGR) is a large and morphologically complex topographic feature, formed by a number of large-scale geological events that included volcanism, subsidence and surface erosion. This feature is located in the Brazil basin (SW Atlantic), delimited by latitudes 28° – 33°S and longitudes 29° – 39°W. The western portion of the RGR, known as ‘Alpha’, is a massif that extends 140.615 km², with a flat summit modified by a 1200-m deep central trough that crosses the structure in the NW-SE direction. In 2013, Alpha was explored by a scientific expedition conducted by the research vessel Yokosuka, under a Brazil-Japan bilateral cooperation agreement known as ‘Iata-Piuna’ (JAMSTEC, IOUSP, CPRM), which promoted a series of deep dives conducted by the manned submersible Shinkai 6500. This study analyzed video profiles produced during two dives of the Shinkai 6500 (30°22'48''S - 36°02'29''W and 31°05'41''S - 34°02'21''W) and one dive of the deep tow camera YKDT157 (30°05'45''S - 34°17'34''W). The videos revealed a considerable diversity of habitats, and benthic megafauna dominated by cnidarians (61% of morphotypes) and sponges (8% of morphotypes). The density varied in different spatial scales, being higher in the northwestern portion of Alpha and very low in the southeastern portion. Megafaunal density was also higher in shallower habitats (~600-m deep) and near the rim and lateral wall of the central trough. Richness was relatively high in the video profiles, reaching a total of 172 morphotypes observed along a total explored distance of 8 km. In the areas of greatest densities, the diversity of megafauna was relatively low, due to the dominance of a few suspension-feeders, in particular the sponge Sarostegia oculata. In the low-density areas, the distribution of morphotypes was more even. It is possible to infer that the northwestern portion of Alpha is subject to greater advection of suspended particles, due to the intense deep current dynamics. Thus, these areas may sustain a higher concentration of benthic life, dominated by a few species that are particularly apt to take advantage of this specific energy supply in a nutrient-poor region of the South Atlantic. Seamount biological communities face a number of threats linked to human activities, one of which is the potential mining of Ferromanganese-rich Cobalt crusts. This study developed a model to assess environmental risk associated with exploration activities in Alpha, capable of estimating the vulnerability of different areas and benthic habitats to such activities, using basic information contained in the video profiles. This model may represent a robust option for future studies on the
management processes of mineral exploration, and even exploitation phases in the RGR. These processes should take into consideration the spatial heterogeneity of Alpha habitats and the associated beta-diversity.

Key-words: SW Atlantic, seamount ecology, Rio Grande Rise, benthic megafauna.
1. INTRODUÇÃO

As montanhas submarinas são elevações topográficas do oceano profundo, geralmente isoladas, em forma de cone e muitas vezes originadas por atividade vulcânica (WESSEL, 2007). Essas elevações projetam ambientes bentônicos e bento-pelágicos até diferentes camadas do pelagial oceânico. Nesse sentido submetem estes ambientes a importantes gradientes físicos e químicos e apresentam uma diversidade de componentes geológicos e biológicos que os diferenciam dos vastos espaços do oceano profundo. Tais características têm despertado mundialmente o interesse econômico e conservacionista em torno dessas estruturas, sobretudo na perspectiva do potencial de exploração de minérios e recursos pesqueiros (CLARK et al., 2007; SCHLACHER et al., 2010; HEIN et al., 2013).

O verdadeiro número de montanhas submarinas é desconhecido, porque a cobertura da topografia do fundo marinho ainda é limitada espacialmente. Estima-se, através de dados altimétricos produzidos por satélites, que existem entre 50.000 e 100.000 montanhas, o que as caracterizam como ambientes de profundidade onipresentes (KITTINGMAN et al., 2007, ISBA, 2007). A ocorrência de crostas ferromanganeseíferas ricas em cobalto (CFRCs) em montanhas submarinas está associada à precipitação gradual de elementos dissolvidos na coluna de água, favorecida pela topografia íngreme, elevado fluxo de água e livre de sedimentação. O interesse sobre estas crostas justifica-se pela potencial fonte de cobalto e níquel, além de ferro e manganês necessários para o desenvolvimento tecnológico no futuro (HEIN et al., 2013). Estudos têm relatado a sua elevada concentração em torno de diferentes ilhas no Oceano Pacífico, Polinésia Francesa, Arco Izu-Ogasawara, bem como em ilhas e montanhas submarinas no Oceano Índico (HEIN et al., 2013, ISBA, 2007).

As montanhas submarinas apresentam comunidades bentônicas cuja composição de espécies difere daquela encontrada nos ambientes abissais circundantes. Ao contrário desses ambientes dominados por fundos sedimentares, montanhas submarinas têm substratos rochosos frequentemente dominados por invertebrados bentônicos suspensívoros, como corais de águas frias de vida longa e esponjas, aos quais se associam uma diversa gama de outros invertebrados e peixes (SAMADI et al., 2007). Biogeograficamente, montanhas submarinas podem ser comparadas com ilhas separadas por grandes áreas do oceano profundo, sendo assim, vistas como possíveis "trampolins" para a dispersão de espécies e como potenciais fontes de isolamento para a especiação. Consequentemente, as montanhas submarinas podem servir como áreas restritas para a distribuição de espécies endêmicas bem como refúgios para as populações de espécies que desapareceram da maior parte de suas antigas áreas de
A observação de Longhurst (1998) diz que há tanto uma mudança faunál marinha sobre 1000 metros verticalmente como sobre 1000 quilômetros horizontalmente, podendo aplicar-se para montanhas submarinas.

A distribuição, diversidade, abundância destes organismos parecem estar relacionados com vários fatores, incluindo condições hidrográficas locais, a proximidade de fontes de larvas, localização geográfica e topografia de montanhas submarinas. Avaliações recentes têm demonstrado que montanhas submarinas apresentam níveis de diversidade bentônica e endemismo comparáveis àqueles encontrados nas margens continentais, porém com comunidades normalmente diferentes em termos de composição e abundância de espécies (SCHLACHER et al., 2010). Foram considerados ambientes homogêneos no que se refere à composição de comunidades biológicas, porém hoje admite-se a existência de variabilidade interna (numa mesma montanha) aspecto merecedor de mais estudos, principalmente como função do tamanho, altitude e diversidade de habitats (STOCKS & HART, 2007). A elevada biomassa por vezes observada nas montanhas submarinas tem sido atribuída a um aumento da produtividade devido à formação de colunas de Taylor, o aprisionamento de migração de zooplâncton, e advecção de matéria orgânica e organismos planctônicos em suspensão devido aos padrões de circulação de correntes induzidos pela topografia (GENIN & DOWER, 2007; LUNDSTEN, 2007). São muitas vezes locais de biomassas elevadas e podem, portanto, agir como locais de alimentação para peixes migratórios, mamíferos marinhos e aves marinhas (SCHLACHER et al., 2010). As espécies mais conspícuas que habitam as montanhas submarinas e outros habitats de profundidade são membros da megafauna, sendo que informações sobre sua abundância e distribuição são fundamentais para a compreensão da ecologia bentônica do mar profundo (KAUFMANN, 1989).

O Atlântico Sul-Ocidental apresenta um número reduzido de grandes montanhas submarinas, quando se compara com outras áreas oceânicas como o Pacífico Oeste (KITCHINGMAN et al., 2007). No entanto, merece destaque nessa área um extenso complexo de altos topográficos conhecido como Elevação do Rio Grande, cujo interesse comercial tem crescido na última década devido à concentração de depósitos de CFRCs e sua posição estratégica no Atlântico Sul (HEIN et al., 2013). Inclui um conjunto de habitats e ecossistemas de mar profundo ainda pouco conhecidos e que têm recebido particular atenção da ciência tendo em vista as perspectivas de exploração comercial (PEREZ et al., 2012).
1.1 A ELEVAÇÃO DO RIO GRANDE

A Elevação do Rio Grande é um complexo de altos topográficos situados na planície abissal do Brasil (Atlântico SO) na área delimitada pelas latitudes 28° – 33° S e as longitudes 29° – 39° W (Figura 1). Descrita durante as medições de batimetria realizadas pela embarcação de pesquisa norte-americana USS Enterprise em 1883, a maior parte do conhecimento geológico atual desta estrutura, originou-se de estudos realizados um século depois, na década de 1980, principalmente no âmbito do “Deep Sea Drilling Project” (DSDP) (MOHRIAK et al., 2010; USSAMI et al., 2012).

A topografia da Elevação de Rio Grande (ERG) é complexa e dividida em duas unidades: as dorsais Oeste (ERGO) e Leste (ERGL). A ERGO é formada por um maciço elíptico que se eleva 4000 m acima do assoalho oceânico e tem uma área estimada de 140.615 km² (Figura 1). Este maciço é conhecido como Alfa (seguindo nomenclatura utilizada pelo Serviço Geológico do Brasil). O cume de Alfa é plano, cerca de 600 m abaixo do nível do mar e as encostas são suaves e com espessa cobertura sedimentar, este cume é seccionado por uma depressão central ou graben que corta a superfície da estrutura na direção NO-SE, tem largura de 40 km, 300 km de comprimento e 1200 m de profundidade. A ERGL é composta por dois segmentos, o primeiro, denominado “Delta”, é uma elevação com forma de dorsal com orientação Norte–Sul, paralela à Dorsal Meso-Atlântica. Ao sul deste segmento eleva-se um maciço de forma semelhante a Alfa, porém de menor tamanho e mais profundo, denominado “Charlie”, que da mesma forma é cortado em seu cume por uma depressão ou graben (Figura 1).

A ERG é derivada da extrusão massiva de basalto ocorrida há cerca de 70-80 Ma fragmentada devido a subsequente divergência das placas tectônicas da África e América do Sul. Esse processo resultou na formação da ERG e da Cadeia Walvis a oeste e leste da dorsal meso-oceânica, respectivamente (O’CONNOR & DUNCAN, 1990; USSAMI et al, 2012). Eventos geológicos posteriores contribuíram para a geomorfologia atual da ERG e configuração do substrato, incluindo: subsidência térmica, novo vulcanismo no período Eoceno (30-50 Ma) que elevou novamente a estrutura acima do nível do mar, erosão e sedimentação em águas rasas e nova subsidência a profundidades atuais (USSAMI et al., 2012).

A ERG, assim como a Dorsal Walvis, tem um efeito significativo na circulação das massas de água profundas do Atlântico: (a) a Água Antártica de Fundo (AABW) formada na Antártica e que flui para o norte abaixo de 4000m de profundidade; e a (b) Água Profunda do
Atlântico Norte (NADP) formada no Ártico e que flui para o Sul entre 1500 e 4000 m de profundidade. É limitada a oeste e leste por dois canais profundos da bacia oceânica do Brasil, conhecidos como Canal de Vema e Hunter, respectivamente, por onde circula praticamente toda a Água Profunda do Atlântico (MOROZOV et al., 2010) que atinge a região central do Atlântico SO e até o Atlântico Norte.

 Pouco se conhece sobre os ecossistemas presentes na ERG ou seu funcionamento. Apesar de se considerar possível a presença de ambientes quimiossintetizantes localizados, a maior parte da estrutura deve receber aporte da produção em superfície, sob a forma de matéria orgânica particulada. Como a região está sob o efeito em superfície, das águas oligotróficas do giro Subtropical do Atlântico Sul, é possível se prever ambientes profundos, em geral, de baixa energia, a não ser pela eventual presença/efeito de processos de enriquecimento tópicos das montanhas submarinas citados anteriormente (ver revisão PEREZ et al., 2012).

 Dados biológicos dessa região limitam-se a registros de diversidade de peixes realizados a partir de campanhas de exploração pesqueira pela Rússia nas décadas de 1960 e 1980 (ver revisão em PEREZ et al., 2012). São inexistentes ou indisponíveis avaliações das comunidades bentônicas e seus padrões de distribuição e abundância. A escassez de conhecimento sobre habitats e comunidades de organismos bentônicos e pelágicos (ver revisão em PEREZ et al., 2012), além de representar uma importante lacuna na compreensão dos ecossistemas profundos do Atlântico Sul, também se defronta com a pressão estabelecida a partir das iniciativas de uso dos recursos minerais da área, em particular as CFRCs (HEIN et al., 2002).

 Diversos países, como o Brasil, têm se proposto a conhecer o potencial de recursos minerais nos altos topográficos do Atlântico, visando garantir oportunidades futuras de usufruir desses recursos. No entanto, importantes lacunas de conhecimento científico existem e devem obstruir a aplicação de modelos de uso sustentável nessas áreas além da necessária conservação desses ambientes para o futuro. Estas lacunas estão centradas em questionamentos ecológicos fundamentais associados à compreensão das comunidades biológicas dos altos topográficos, dos quais se destacam: (a) o conhecimento incompleto da diversidade e da estrutura das comunidades biológicas em geral; (b) a compreensão muito restrita sobre os padrões de variabilidade espacial incluindo-se aqueles associados a diversidade de habitats, topografia, estratos batimétricos e a presença de CFRCs; (c) a falta de entendimento de como elevações topográficas de grande extensão geográfica e complexidade morfológica se comparam às montanhas submarinas em geral no que se refere à diversidade e estrutura das comunidades biológicas; (d) a necessidade de compreensão de como
comunidades com essas características sofreriam os efeitos de perturbações oriundas de eventuais atividades de exploração de CFRCs crostas de cobalto.

O presente estudo está direcionado à necessidade global de se ampliar o conhecimento do oceano profundo, seus ecossistemas e seu papel na geração de serviços e recursos, numa perspectiva atual de mudanças ambientais globais. Esta é uma das áreas menos estudadas do planeta e estima-se que seja de vital importância para o conhecimento do funcionamento dos oceanos, já que conecta todos os oceanos e influencia drasticamente na circulação de água profunda, responsável por importantes padrões climáticos globais (por ex. Trocas de calor) e de distribuição de biodiversidade marinha (ver revisão em PEREZ et al., 2012).

Além disso, o Brasil tem investido, através de ações políticas e técnico-científicas, na prospecção de recursos minerais nos fundos além de sua ZEE (conhecidos como ‘Área’). Em 2009, o programa PROAREA (Programa de Prospeção e Exploração de Recursos Minerais da Área Internacional do Atlântico Sul e Equatorial) foi criado no âmbito da Secretaria Interministerial dos Recursos do Mar (CIRM, 2009) com os objetivos de “coleta de dados para subsidiar futuras requisições brasileiras de áreas de prospecção e exploração mineral junto à Autoridade Internacional dos Fundos Marinhos (ISBA)” e “obtenção de informações técnicas, econômicas e ambientais necessárias para que empresas, públicas e privadas, e órgãos governamentais possam desenvolver atividades de exploração mineral e gestão ambiental na área internacional do Atlântico Sul e Equatorial”.

Esta iniciativa teve como primeiro alvo as concentrações de CFRCs encontradas sobre a Elevação do Rio Grande. Através do projeto intitulado “Crostas Cobaltíferas da Elevação do Rio Grande” (PROERG) foram realizadas pelo Serviço Geológico do Brasil (CPRM), entre 2010 e 2012, atividades prospectivas na Elevação do Rio Grande, incluindo o mapeamento de algumas áreas e a coleta de dados e amostras geológicas e biológicas, cujas descobertas justificaram a elaboração de uma proposta brasileira para exploração destes minerais junto a ISBA.

Estes esforços culminaram em 2015 no licenciamento outorgado à CPRM pela Autoridade dos Fundos Marinhos (ISBA - Convenção das Nações Unidas para o Direito do Mar) de realizar atividades de “exploração” científica na ERG por um período de 15 anos. Este direito, no entanto, está atrelado ao cumprimento de ações de cunho ambiental necessárias para o estabelecimento futuro de regimes sustentáveis de uso e preservação destes frágeis ecossistemas profundos. A ISBA define através de Códigos de Mineração, o conjunto mínimo de dados e de estudos necessários para se permitir o desenvolvimento de atividades de “exploração” nessas regiões, as quais incluem a construção de uma “Linha de Base”
ambiental e elementos que permitam o monitoramento de possíveis mudanças ambientais decorrentes das atividades exploratórias, bem como estudos de impacto ambiental. Nesse sentido, além da probabilidade de ampliar o conhecimento científico sobre a ecologia dessa região profunda do Atlântico, o presente projeto se justifica no contexto da iminente necessidade de geração de informações ambientais basilares sobre a Elevação do Rio Grande, inclusive aquelas formalmente requisitadas pelo Código de Mineração das Crostas Ferromanganesíferas (ISBA, 2007), além de avaliar os possíveis efeitos das atividades previstas no Plano de Trabalho para exploração de crostas sobre habitats e comunidades.

1.2 A EXPEDIÇÃO “IATA-PIUNA”

Aparte das iniciativas prospectivas conduzidas pelo Governo Brasileiro, em 2013, a ERG também foi alvo de exploração científica no contexto de um acordo de cooperação bilateral Brasil – Japão, que estabeleceu o consórcio entre o Instituto Oceanográfico da Universidade de São Paulo (IOUSP), o Serviço Geológico do Brasil (CPRM) e a Japan Agency for Marine Earth Science and Technology (JAMSTEC) e a iniciativa, conhecida como “Iata-Piuna”, cuja principal realização foi uma viagem exploratória com o Navio de Pesquisa Yokosuka e o submersível Shinkai 6500.

A expedição foi uma etapa do projeto “Quelle 2013” (Quest for the Limit of Life – 2013) sob o comando do Departamento de Ciências Biológicas e Geológicas da JAMSTEC com o objetivo de explorar, com Shinkai 6500, ecossistemas marinhos “extremos” em torno do planeta e compreender os limites da vida, ou seja, os mecanismos-chave para a compreensão da vida marinha nesses ambientes. A etapa referente ao Atlântico Sul (chamada de “Iata-Piuna”) foi realizada em duas pernadas; a primeira partiu da Cidade do Cabo (África do Sul), em abril de 2013, realizou uma série de mergulhos na Dorsal de São Paulo e Elevação do Rio Grande, finalizando no porto do Rio de Janeiro no início de maio. A segunda pernada partiu desse porto realizando mergulhos na região do Platô de São Paulo ao norte do Estado do Rio de Janeiro, finalizando no porto de Santos (São Paulo) no final de maio. Durante esses mergulhos, as referidas regiões profundas do Atlântico Sul-Ocidental, dentro e fora da Zona Econômica Exclusiva do Brasil, tiveram seus habitats bentônicos registrados em vídeo de alta resolução e espécimes biológicos e geológicos coletados para identificação e estudos. O presente trabalho é um produto dessa iniciativa sem precedentes nesta área do planeta e fundamental para o desenvolvimento do estudo do mar profundo no Brasil.
2. OBJETIVOS

2.1 OBJETIVO GERAL

Estudar os habitats e a estrutura das comunidades da megafauna bentônica na Elevação do Rio Grande a partir de imagens submarinas, no contexto das perspectivas da exploração mineral e conservação.

2.2 OBJETIVOS ESPECÍFICOS

- Descrever habitats bentônicos do platô do principal componente topográfico da ERG conhecido como Alfa;
- Caracterizar a diversidade e a estrutura das comunidades da megafauna bentônica de uma área de Alfa, em termos de abundância e diversidade; e sua variação em função de diferentes habitats, extensão geográfica e geomorfologia;
- Inferir padrões de vulnerabilidade das comunidades da megafauna bentônica às atividades previstas no plano de exploração das CFRCs.
3. MATERIAIS E MÉTODOS

3.1 ÁREA DE ESTUDO E OS PONTOS DE EXPLORAÇÃO SUBMARINA

A área estudada está centrada sobre o platô de Alfa, explorada em abril-maio de 2013 durante a primeira etapa da expedição Iata-Piuna (JAMSTEC/ IOUSP/ CPRM) a bordo do Npq. Yokosuka. Nesta etapa foram realizados seis mergulhos profundos com o submersível tripulado Shinkai 6500 e o veículo rebocado YKDT-157, três dos quais exploraram as áreas da depressão central de Alfa e seu entorno (Tabela 1). Estas áreas incluíram posições dentro e fora dos blocos requisitados pelo Brasil à ISBA para exploração de CFRCs.

<table>
<thead>
<tr>
<th>Perfil</th>
<th>Início Data</th>
<th>Início Hora</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Duração (Duração</th>
<th>Distância Percorrida (Km)</th>
<th>Distância entre os Perfis (Km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6K1338</td>
<td>30/04/2013</td>
<td>11:21</td>
<td>30°22'48"S</td>
<td>36°02'29"O</td>
<td>4h56'</td>
<td>2231,8m</td>
<td>6K1338 – 6K1339 = 206,57</td>
</tr>
<tr>
<td>6K1339</td>
<td>02/05/2013</td>
<td>11:11</td>
<td>31°05'41"S</td>
<td>34°02'21"O</td>
<td>4h49'</td>
<td>3259m</td>
<td>6K1338 – YKDT157 = 170,11</td>
</tr>
<tr>
<td>YKDT157</td>
<td>01/05/2013</td>
<td>10:04</td>
<td>30°05'45"S</td>
<td>34°17'34"O</td>
<td>5h25'</td>
<td>~2500m</td>
<td>6K1339 – YKDT157 = 114,20</td>
</tr>
</tbody>
</table>

O primeiro perfil (6K1338) foi realizado pelo submersível Shinkai 6500 em 30 de abril de 2013 percorrendo uma trajetória de 2.232m (figuras 2 e 3A) sobre a posição 30°22’48”S e 36°02’29”O. Essa trajetória, incluindo as atividades de registro de imagens e coleta de amostras, iniciou às 11h21min, quando o submersível atingiu o alvo inicial, o fundo da depressão central de Alfa, a 1.242m de profundidade. A partir daí rumou em direção à encosta norte ascendendo ao longo da encosta até atingir o platô a 770m de profundidade, seguindo rumo NO até as 16:00hs quando retornou a superfície após 4h56min de exploração.

O segundo perfil analisado (6K1339), foi realizado em 02 de maio de 2013 sobre a posição 31°05’41”S e 34°02’21”O (figuras 2 e 3B). A trajetória iniciou às 11h 11minutos quando o submersível assentou sobre o fundo sedimentar sobre o platô de Alfa a 921m de profundidade, deslocando-se por 3.259m durante 4h 89minutos.

O terceiro perfil foi realizado em 01 de maio de 2013 pelo veículo rebocado YKDT-157 no platô de Alfa sobre um “Pockmark” localizado em 30°05’45”S e 34°17’34”O (figuras 2 e 3C). A trajetória e o registro de imagens iniciaram às 10:04h à 1.003 m de profundidade, com deslocamento em direção Sudeste e duração total de 5h 25minutos.

Figura 3. Trajetória dos perfis (A) 6K1338, (B) 6K1339 e (C) YKDT-157 na Elevação do Rio Grande projetados sobre as linhas batimétricas obtidas pelo mapeamento por ecossonda multifíxe. A estrela demarca o local de início da trajetória.
3.2 PERFIS DE VÍDEO

Ao longo de todas as trajetórias descritas acima foram obtidos registros videográficos contínuos, aqui denominados “perfis de vídeo” obtidos em alta resolução sobre o platô de Alfa. Estes vídeos continham informações contínuas da data, hora, profundidade, altitude do veículo (em metros) e rumo da proa além de outros ângulos que definiram a postura do veículo (em graus). As posições (latitude e longitude) dos veículos utilizados ao longo das trajetórias foram estimadas pela tripulação através de comunicação acústica com o M/Pq Yokozuka durante o mergulho.

Dois perfis de vídeo foram gerados ao longo de cada um dos perfis 6K1338 e 6K1339 a partir da operação de duas câmeras HD posicionadas na proa do submersível tripulado Shinkai 6500. A primeira câmera (HD TV Câmera 1) não tinha mobilidade e, portanto, registrou um campo de visão fixo à frente do submersível (Figura 4A). A segunda câmera (HD TV Câmera 2) era móvel (“pan & tilt”) registrando campos de posição e extensão variáveis. A trajetória do perfil YKDT157 foi documentada em quatro perfis de vídeo gerados por quatro câmeras de diferentes características e posicionadas em diferentes pontos do veículo rebocado (Figura 4B). Apenas uma das câmeras era de alta resolução.

3.3 PROCESSAMENTO DE IMAGENS

3.3.1 ANÁLISE QUALITATIVA

Para análise qualitativa das imagens, todos os vídeos disponíveis foram observados duas vezes de forma contínua. Durante a primeira observação foram registrados ao longo do percurso informações sobre a cobertura dos tipos de substrato e topografia. Essas informações foram combinadas para a definição de “habitats”, os quais foram delimitados ao longo da trajetória pela distância e hora de início e distância e hora de fim.

A segunda observação envolveu o registro dos organismos visíveis da megafauna bentônica. Os vídeos foram examinados de forma contínua, interrompendo-se sempre que organismos fossem avistados, extraíndo-se imagens congeladas (frames) representativas desses trechos. Esses organismos foram classificados em “morfotipos” os quais receberam um código exclusivo e subsequentemente foram identificados, sempre que possível, em grandes grupos (Filos, Classes, Ordens). O mesmo procedimento de tipificação foi feito com registros
macroscópicos de vestígios de bioturbação deixadas no sedimento. A inclusão dos mesmos foi considerada importante uma vez que tais traços são muitas vezes os únicos sinais visíveis da presença de determinadas espécies (KAUFMANN, 1989). O número total de morfotipos por imagem, habitat e perfil de vídeo foi utilizado como indicador de “riqueza” nas análises subsequentes.
Figura 4. Demonstração dos equipamentos utilizados e da coleta do submersível Shinkai 6500 (A) e do veículo rebocado YKDT (B).
3.3.2 ANÁLISE QUANTITATIVA

A análise quantitativa da megafauna bentônica foi realizada apenas para as trajetórias dos perfis 6K1338 e 6K1339 realizados pelo submersível Shinkai 6500. A decisão de desconsiderar o perfil YKDT157 se justifica pelas diferenças na qualidade das imagens, maior velocidade de deslocamento e instabilidade do veículo rebocado, que tornaram as condições de visualização distintas e não comparáveis com aquelas experimentadas na análise dos vídeos produzidos pelo Shinkai 6500. Para a análise dos dois perfis citados acima foram ainda definidas as restrições: (a) análise apenas dos vídeos registrados pela HD TV Câmera 1, que gera uma imagem fixas a frente da proa do veículo utilizado; (b) análise apenas dos trechos em que o submersível se deslocava a frente e (c) exclusão de trechos com declividade acentuada.

Os vídeos foram inicialmente fragmentados em imagens congeladas (frames) representando todos os trechos percorridos pelo Shinkai 6500, não sobrepostos. Posteriormente, foram descartadas imagens consideradas com visibilidade irregular, a partir de critérios como altitude maior ou igual a 3 m, elevada turbidez e iluminação insuficiente. Nas imagens restantes foram realizados os procedimentos descritos a seguir:

a. Delimitação da área amostral. Foi aplicado o método desenvolvido por NAKAJIMA et al. (2014) que permite estimar a área à frente do veículo utilizado, que corresponde a metade inferior de cada imagem (Figura 5a). Essa é a área mais iluminada e de melhor visualização dos vídeos, porque o ponto de incidência da lente da câmera que determina o ângulo de incidência (θ na Figura 5b), encontra-se exatamente no centro da imagem. O ângulo de incidência (θ) é um parâmetro importante para medir a área a partir de imagens oblíquas. A metade superior dessas imagens é muitas vezes escura devido à falta de luz refletida, dificultando a visibilidade dos organismos nessa área. Observações quantitativas de apenas a metade inferior de cada imagem permite a identificação e contagem precisa de animais, como eles estão muito mais perto da câmera. Os parâmetros necessários para estimar a área da metade inferior da imagem da área trapezoidal (ABDE na figura 5b) foram ângulos (em graus) de abertura vertical (α) e horizontal (β) da câmera, o ângulo de incidência da câmera (θ) e a distância (em metros) entre a câmera e o fundo (OH) (figura 5b). O ângulo de incidência da câmera foi obtido pela soma dos ângulos de inclinação do veículo (η) e da câmera no veículo (ρ), onde o ângulo η para baixo é expresso com um valor positivo (+), enquanto o ângulo ρ para cima é expresso com um valor negativo (-);
enquanto a distância entre a câmera e o fundo (OH) foi calculada a partir da distância do
fundo da lente para o veículo (a), distância horizontal da lente até o final do veículo (c) e
altitude do veículo (d) (figura 5b). Segundo as especificações técnicas do Shinkai 6500, ρ
= 40°, α = 57°, β = 90°, a = 1,7m, e c = 2,8m. Já d, η e ρ são variáveis informadas no
próprio vídeo. A área trapezoidal (S) que aparece na metade inferior da imagem (ABDE
nas figuras 5a e 5b) onde AE e BD são os comprimentos reais das bases inferior e superior
no trapézio ABDE, respectivamente, e CF é o comprimento vertical do trapézio. δ, θ, OH,
γ, S, AE, BD e CF foram calculados da seguinte forma:

- δ = 180° − (90° + θ + α/2)
- γ = 180° − (90° + η)
- θ = η + ρ
- OH = a sen γ − 1 − (a tan γ − 1 + c) cos γ + d sen (90°−η)
- AE = 2 tan (β/2) (OH sen θ−1)
- BD = 2 tan (β/2) (OH cos δ−1)
- CF = OH (tan θ−1 − tan δ)
- S(ABDE) = (AE + BD) × CF/2

Em média, as áreas S calculadas em cada imagem foram de 26,4 m², variando entre 6,1 e
124,4 m².

b. Contagem de indivíduos dentro das áreas demarcadas em cada imagem. No interior das
áreas demarcadas todos os organismos da megafauna bentônica visíveis foram
enumerados e registrados por morfotipo. Não foram incluídos os morfotipos de vestígios
de bioturbação, por não ser possível garantir a presença ou não de um organismo. As
contagens foram realizadas mais de uma vez de forma a eliminar incertezas sobre
quantitativos finais a serem analisados. Os dados foram organizados em uma matriz
“morfotipos x imagens” e os valores registrados foram transformados, em densidades a
partir da divisão da abundância total e de cada morfotipo pela área observada em cada
imagem (número de indivíduos/ m²).
Figura 5. Um exemplo de uma imagem oblíqua, enfatizando a metade inferior da imagem, (a). Diagrama trapezoidal que aparece na metade inferior da imagem, (b). Onde: O, origem (lente da câmera do submersível); C, centro de imagem; OC, distância do centro da lente para a imagem; OH, distância da lente para o fundo; θ, ângulo de incidência; α, ângulo de abertura vertical da câmera; e β, ângulo de abertura horizontal da câmera. Figura gerado por Nakajima et al (2014).

c. Avaliação da adequação da área amostral. Os registros de abundância e densidade foram agrupados por habitat pré-definido, e foram realizadas análises da distribuição do número de morfotipos e indivíduos por imagem. Essa análise permitiu visualizar um número
significativo de imagens com zero ou um indivíduo, evidenciando que a área amostrada em cada imagem era insuficiente levando-se em consideração a distribuição esparsa dos organismos nos habitats de Alfa. Nesse sentido decidiu-se “aumentar o amostrador” agrupando registros de quatro imagens consecutivas; estes passaram a ser uma unidade amostral (amostra) cuja área e abundância de indivíduos resultou da soma dos valores referentes às quatro imagens fusionadas. O procedimento levou à restruturação de uma matriz “morfitipos x amostra” que serviu de base para as análises seguintes.

3.4 ANÁLISE DOS DADOS

3.4.1 QUALITATIVOS

Um conjunto completo de morfitipos observados nos vídeos dos três perfis sobre Alfa, foi listado de acordo com o nível taxonômico identificado. Da mesma forma foi construído um inventário com exemplos de imagens dos morfitipos, adicionados em seus códigos de referência (APÊNDICE A). Por fim foram calculadas frequências de ocorrência dos principais grupos de morfitipos por habitats e perfis, como uma forma descritiva de representar a ocorrência da diversidade da megafauna bentônica nos diferentes setores de Alfa.

3.4.2 QUANTITATIVOS

As matrizes “morfitipos x amostras” serviram de base para análises descritivas das comunidades da megafauna bentônica tomando-se perfis, habitats, trechos, estratos batimétricos e feições topográficas como fatores de agrupamento e potencial efeito sobre a diversidade observada.

3.4.2.1 DENSIDADE

Foram sorteadas 70% do total de amostras disponíveis em cada habitat de cada perfil. Foram analisadas as distribuições das densidades amostrais totais (todos os morfitipos agrupados) observadas nos perfis 6K1338 e 6K1339 e habitats presentes nestes sendo representadas em gráficos do tipo “box-plot”. As variações de densidades dos organismos dos habitats no perfil 6K1338 e 6K1339, e entre eles, testadas por testes não-paramétricos por não
terem sido satisfeitas os requisitos de normalidade da distribuição da variável densidade (ZAR, 2009). Nesses testes Ho = perfis e habitats dentro dos perfis têm a mesma densidade e Ha = perfis e habitats dentro dos perfis não têm a mesma densidade. O nível de significância foi de α = 0,05.

O teste de Mann-Whitney (U) é indicado para comparação de dois grupos não pareados para se verificar se pertencem ou não à mesma população e cujos requisitos para aplicação do teste t não foram cumpridos. Este teste pode ser considerado a versão não paramétrica do teste t para amostras independentes. Ao contrário do teste t, que testa a igualdade das médias, o teste de Mann-Whitney testa a igualdade das medianas. Este teste foi utilizado para a comparação entre perfis e entre os habitats do perfil 6K1339, onde se compararam duas “populações” de dados. Para o perfil 6K1338 que contém 3 “populações” de dados (habitat 1, habitat 3 e habitat 4) foi utilizado o teste de Kruskal-Wallis utilizado para comparar três ou mais populações (ANOVA não-paramétrica).

3.4.2.2 DIVERSIDADE

3.4.2.2.1 DIVERSIDADE α

A diversidade α da megafauna bentônica dos perfis foi analisada considerando inicialmente a riqueza de morfotipos observada nos perfis de vídeo e nos habitats dentro destes. Para esta análise foi construída uma matriz presença-ausência de morfotipos em cada amostra. Esta matriz incluiu amostras em todos os habitats dos perfis 6K1338 e 6K1339, inclusive aqueles que tinham declividade acentuada e que foram excluídos das análises quantitativas. O “número de amostras” foi utilizado como uma medida de esforço amostral para a construção de Curvas de Rarefação para cada perfil com todos os habitats incluídos. A técnica de Rarefação consiste em calcular o número esperado de espécies em cada amostra para um tamanho de amostra padrão. O número esperado de morfotipos é obtido pela equação:
Onde $E(S)$ é o número esperado de morfotipos em uma amostragem aleatória, S é o número total de morfotipos registrados, N é o número total de morfotipos registrados, N_i é o número de morfotipos da espécie i, e n é o tamanho padronizado da amostra escolhida. Os gráficos foram construídos no programa PAST: rarefação (Mao’s tau).

A seguir foram estimados índices de diversidade e equitabilidade utilizando-se agora a matriz de densidade morfotipos x amostra.

O índice de Shannon-Wiener (H') foi calculado para perfis e habitats de acordo com a equação:

$$H' = - \sum_{i=1}^{S} p_i \ln p_i$$

onde S é o número total de morfotipos de um habitat ou perfil, p_i é a proporção da morfotipos i, estimada como n_i/N, onde n_i é o número de indivíduos do morfotipo i em um habitat ou perfil, e N é o número total de indivíduos nesse habitat ou perfil. A uniformidade dos morfotipos nos habitats ou perfis foi representada pelo Índice de Equitabilidade de Pielou (E), calculado como a razão entre a diversidade H' obtida e a diversidade máxima (H'_{max}), a qual seria possível em uma situação onde todas os morfotipos fossem igualmente abundantes. Neste caso $H'_{max} = \ln S$. O valor de E varia entre 0 e 1 com 1 representando uma situação em que todas os morfotipos fossem igualmente abundantes. Por fim, o índice de Simpson (D), que representa a probabilidade de dois indivíduos retirados aleatoriamente de uma comunidade pertencem ao mesmo morfotipo, foi calculado para perfis e habitats de acordo com a fórmula:

$$D = \frac{1}{\sum_{i=1}^{S} p_i^2}$$
Por fim foi estimada a Curva de Dominância para cada habitat e perfil a partir da distribuição gráfica da proporção numérica de cada morfotipo (p_i) ordenada de forma decrescente (desde o morfotipo relativamente mais frequente até o menos).

3.4.2.2.2 DIVERSIDADE β

Para o estudo dos padrões de substituição (turnover) de morfotipos entre habitats e perfis, a diversidade β, foi considerada a matriz de presença-ausência já utilizada na análise da riqueza de morfotipos, aplicando-se o Índice de Sorensen (I_{ss}) entre habitats e perfis, calculado pela fórmula:

$$I_{ss} = \frac{2C}{(A + B)} \times 100$$

onde C= número de morfotipos presentes em ambos os habitats ou perfis; A= número de morfotipos apenas presentes no perfil ou habitat A; e B= número de morfotipos apenas presentes no perfil ou habitat B (LAROCA 1995). O índice varia entre 0 (semelhança nula) e 1 (semelhança máxima).

O mesmo índice também foi calculado para cada par de amostras possível entre dois habitats ou perfis e construído o Diagrama Ternário, disponível na ferramenta (SYSTAT™). Este gráfico triangular tem três componentes (Figura 6), onde a’, representa a porcentagem de morfotipos compartilhados, i.e. presentes em dois perfis ou habitats consecutivos; b’, a porcentagem de morfotipos presentes exclusivamente em um perfil ou habitat “seguinte” e; c’, a porcentagem de morfotipos presentes apenas em um perfil ou habitat “local”. O número total de morfotipos de dois perfis e habitats consecutivos (um considerado “local” e outro “seguinte”) será a + b + c, e portanto a’ + b’ + c’ = 100% (KOLEFF et al, 2003).
Figura 6. Interpretação do diagrama ternário com os componentes a', b' e c'. Imagem reproduzida de Koleff et al. (2003).

A magnitude de a' é o grau de compartilhamento da espécie entre dois perfis e habitats consecutivos. Aumenta a partir da base (0% de compartilhamento) do triângulo em direção ao seu ápice (100% de compartilhamento). Uma alta diversidade β é demonstrada quando há um baixo compartilhamento entre os dois perfis ou habitats consecutivos (pontos próximos da base do triângulo). Além disso, para um dado valor de a' a posição de um ponto no lado direito reflete a contribuição relativa do ganho de morfológios, ou seja, um maior percentual de morfológios da habitat local (c') acrescido de menor percentual de morfológios do habitat seguinte (b'). Por outro lado, um ponto no lado esquerdo reflete a contribuição relativa da perda de morfológios, ou seja, um maior percentual de morfológios “novos” do habitat seguinte em substituição de um elevado percentual de morfológios existentes no habitat local (Figura 6).

3.4.2.3 ANÁLISE DAS COMUNIDADES

Os padrões de similaridade/dissimilaridade na composição de morfológios entre perfis e habitats foram estudados a partir do conjunto de amostras previamente sorteadas dentro de cada habitat (70%), eliminando-se aquelas com densidade total igual a zero. O índice de Bray-Curtis foi calculado pela fórmula:
onde x_i, x_j é a abundância de morfotipos de cada área (i,j).

Foi calculado para obter uma representação das semelhanças da composição dos morfotipos entre todas as amostras e construída uma Matriz de Similaridade (CLARKE & WARWICK, 2001). Esta matriz foi utilizada para a aplicação das técnicas de Escalonamento Multidimensional Não-métrico (MDS) e a Análise de Cluster de forma a ordenar as amostras e visualizar a existência de grupos com composição semelhantes de morfotipos.

As semelhanças/diferenças na composição de morfotipos foi testada a partir da análise PERMANOVA definindo-se como fatores de agrupamento: habitats 1, 3 e 4 pertencentes do perfil 6K1338 e 5 e 6 do perfil 6K1339; tipos de fundo classificados por duro, misto ou inconsolado; e estratos de profundidade, menor que 800m, 800-1000m e maior que 1000m. Esta é uma abordagem não-paramétrica e baseada em ordenamento (e portanto não fazendo pressupostos a respeito da distribuição das variáveis) que permite o cálculo da probabilidade de grupos de dados (e.g, fatores de agrupamento, tratamentos, etc.) terem a mesma composição de espécies (ou seja múltiplas variáveis). A PERMANOVA foi aplicada para comparação da composição de morfotipos visualizados (presença/ausência e densidade dos morfotipos) entre habitats, tipos de fundo e estratos profundidade. A hipótese nula H_0 é que não existem diferenças na composição de morfotipos entre grupos. Para testá-la foi calculada a estatística pseudo-F, e sua distribuição, sob o pressuposto de H_0, foi construída utilizando procedimento de “permutação” (ANDERSON et al., 2013). Neste procedimento as amostras foram “misturadas” entre os grupos pré-definidos 999 vezes e, a cada uma delas, um novo valor de pseudo-F foi calculado. A ideia é que se os fatores não têm efeito sobre a composição de morfotipos, é igualmente provável que qualquer nível de cada fator poderia estar associado com qualquer amostra (ANDERSON et al., 2013).

3.4.3 MODELO PARA ANÁLISE DE RISCO DAS ATIVIDADES DE EXPLORAÇÃO NA ERG

O contrato firmado entre a Companhia de Pesquisa de Recursos Minerais (CPRM) e a Autoridade Internacional dos Fundos Marinhos (ISBA) e seu Plano de Trabalho para
exploração de CFRCs sobre área requisitada em Alfa, Elevação do Rio Grande, prevê a realização de estudos de “Linha de Base” ambiental, monitoramento ambiental da área de exploração e avaliação de impacto ambiental das atividades de exploração. Estas atividades e seu potencial para causarem impactos danosos aos ambientes bentônicos foram apresentadas no Plano de Trabalho e constam da tabela 2. Neste trabalho buscou-se desenvolver um modelo para avaliação do risco potencial destas atividades que são efetivamente danosas aos componentes de megafauna bentônica, tomando como referência, informações extraídas das análises dos perfis de vídeo previamente estudados.

Tabela 2. Atividades incluídas no plano de trabalho atividades de exploração de CFRCs na elevação do rio grande. As atividades que necessitam (em vermelho) e não necessitam (em preto) de avaliações de impacto são indicadas de acordo com isba/19/ltc/8. (tabela retirada do Pedido de Aprovação de um Plano de Trabalho para Exploração e para Obtenção de Contrato, CPRM, 2014).

<table>
<thead>
<tr>
<th>Coleta de dados – observações</th>
<th>Atividade</th>
<th>Potencial para causar dano ambiental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observações oceanográficas</td>
<td>Monitoramento satelital</td>
<td>Nenhum</td>
</tr>
<tr>
<td>Observações oceanográficas</td>
<td>Lançamento de instrumentos (rosete, fundeios)</td>
<td>Nenhum</td>
</tr>
<tr>
<td>Amostragem da coluna de água</td>
<td>Lançamento de instrumentos (rosete/ garrafas de niskin)</td>
<td>Nenhum</td>
</tr>
<tr>
<td>Amostragem pelágica - plâncton/micronecton</td>
<td>Operação de rede pelágica</td>
<td>Nenhum</td>
</tr>
<tr>
<td>Monitoramento de predadores de superfície</td>
<td>Observação visual</td>
<td>Nenhum</td>
</tr>
<tr>
<td>Monitoramento da camada de reflexão de som</td>
<td>Geração de perfis acústicos</td>
<td>Nenhum</td>
</tr>
<tr>
<td>Amostragem bentônica – substrato duro</td>
<td>Operação de trenó epibentônico/ draga</td>
<td>Algum</td>
</tr>
<tr>
<td>Amostragem bentônica – substrato inconsolidado</td>
<td>Operação de “box-core”</td>
<td>Nenhum</td>
</tr>
<tr>
<td>Observações de vídeo e fotografias</td>
<td>Operação de “towed-camera, “TV-grab”, ROVs</td>
<td>Nenhum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exploração Geológica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amostragem de sedimentos</td>
</tr>
<tr>
<td>Amostragem de crostas</td>
</tr>
<tr>
<td>Amostragem de crostas</td>
</tr>
<tr>
<td>Observações de vídeo e fotografias</td>
</tr>
<tr>
<td>Observações “bottom/ Sub-bottom”</td>
</tr>
</tbody>
</table>

Redes de arrasto biológico (dragas bentônicas) (Figura 7A), dragas geológicas (rock-dredges) (Figura 7B) e brocas de rocha (rock-drill) (Figura 7C) foram identificados como potencialmente causadores de danos aos ambientes bentônicos e, portanto, que demandariam
uma avaliação de impacto. Todos os equipamentos de arrasto removem e matam organismos e perturbam o substrato, ao longo de seus caminhos (CPRM, 2014). A perfuração além de poder remover organismos na área perfurada, também produz uma nuvem de detritos, impactando uma área circundante. Segundo ISBA (2007), os impactos bentônicos primários causados pela fase exploratória serão:

(a) Os impactos diretos ao longo da área varrida, onde a crosta e a fauna serão removidas ou dispersas em uma pluma que consiste crosta, sedimentos, vestígios de constituintes químicos, e fauna morta e macerada;

(b) Potenciais efeitos tóxicos associados com a deposição ou a dissolução do material da crosta em organismos suspensívoros e comedores de depósitos;

(c) Asfixia ou sepultamento da fauna bentônica distante do local da remoção da crosta, onde a pluma se instalará; e

(d) Entupimento do mecanismo de organismos suspensívoros e diluição de seus recursos alimentares.

De acordo com o Plano de Trabalho (CPRM, 2014), a área total a ser afetada por este plano de trabalho irá variar entre 0,6 e 1,0 km² (0,0002-0,0003% da área reivindicada). Segundo o Código de Exploração de CFRCs (ISBA, 2007) um impacto superior a 0,01 km² nas atividades de exploração requerem uma avaliação do impacto.

Figura 7. Exemplo dos equipamentos que necessitam de avaliações de impacto de acordo com isba/19/ltc/8. (A) Redes de arrasto; (B) Draga geológica; (C) Rock-drill. (Figuras retiradas do Pedido de Aprovação de um Plano de Trabalho para Exploração e para Obtenção de Contrato, CPRM, 2014).
Para avaliar as potenciais mudanças nos padrões da diversidade e da estrutura das comunidades, em função destas atividades associadas à exploração, uma “análise de risco ambiental” foi adaptada para os dados obtidos, estabelecendo um índice para as áreas de acordo com a sua “vulnerabilidade” (WILLIAMS et al., 2011 A). A FAO (2009) estabelece que “vulnerabilidade” é “relacionada a probabilidade de uma população, comunidade, ou habitat sofrer uma alteração substancial devido a perturbações pontuais ou crônicas, e a probabilidade de se recuperar e em qual período de tempo....Os sistemas mais vulneráveis são aqueles facilmente perturbados e que necessitam de um longo período para se recuperar ou nunca o fazem”. Porém é importante considerar que vulnerabilidade deve ser avaliada em relação a ameaças (ou tipos de perturbação) específicas, pois populações, comunidades podem sofrer mais ou menos sob o impacto de diferentes tipos de atividades perturbadoras. Os “riscos”, por outro lado, para um ecossistema marinho são determinados “pela sua vulnerabilidade, a probabilidade de uma ameaça ocorrer e os meios para sua mitigação” (FAO, 2009).

Tomando como base os conceitos acima a análise de “produtividade-susceptibilidade” (APS) foi uma das etapas envolvidas em todo processo de execução da análise de risco tal qual proposta por Hobday et al. (2007). Foi desenvolvida para avaliar os níveis de vulnerabilidade de uma grande quantidade de fauna acompanhante de uma pescaria de camarões no nordeste da Austrália (STOBUTZKI et al., 2015). A vulnerabilidade (risco a um impacto negativo) é qualitativamente ou semi-quantitativamente estimado para cada espécie componente da captura por meio de indicadores de “produtividade” que é a capacidade do estoque em regenerar a população quando explotada (“resiliência”) e “susceptibilidade” ao petrecho (probabilidade de o estoque ser afetado pela pescaria) (VISINTIN, 2015).

A APS foi particularmente adaptada para este trabalho para avaliar não o quanto as espécies tendem a ser vulneráveis ao impacto, mas sim os ambientes estudados. Nesse sentido o termo mais apropriado foi substituir Produtividade por Resiliência, que representaria a capacidade de um determinado habitat de Alfa, visualizado nas imagens subaquáticas, se recuperar aos possíveis impactos gerados na fase de exploração de CFRCs. Assim, a resiliência de um habitat seria dimensionada pelas características dos organismos que vivem nestes ambientes, estrutura dos habitats e outros componentes ecológicos. Por outro lado, manteve-se o termo “suscetibilidade” como representando a probabilidade ou propensão de um determinado habitat sofrer perturbação devidos às atividades previstas no Plano de Trabalho para exploração geológica e mesmo estudos ambientais. A “vulnerabilidade” de um habitat à estas atividades seriam assim definidas quantitativamente (ver abaixo) a partir da
combinação dos elementos de “resiliência” e “suscetibilidade”. Esta combinação poderia indicar a vulnerabilidade do ambiente, caracterizado por informações exclusivamente disponíveis em perfis de vídeo, à impactos negativos causados pelos equipamentos da exploração. Espera-se que essa metodologia revele quais seriam os ambientes que menos poderiam receber esse tipo de perturbação, passível de utilização durante a fase de estudos ambientais e exploração geológica do Plano de Trabalho.

Assim, os perfis de vídeo (6K1338 e 6K1339) foram subdivididos em segmentos de 90 metros de distância linear dentro de cada habitat pré-definido e estes novos segmentos passaram a representar a unidade para qual se calculou o índice de vulnerabilidade. Cada segmento agregou um número variável de amostras de imagens previamente analisadas, de forma que a informação contida em todas as 2.044 imagens analisadas foram utilizadas para o desenvolvimento do modelo de análise de risco.

3.4.3.1 CRITÉRIOS DE RESILIÊNCIA E SUSCEPTIBILIDADE E SEUS NÍVEIS DE QUALIFICAÇÃO

3.4.3.1.1 RESILIÊNCIA (Ur)

Para a seleção dos critérios de resiliência, foi levando em conta 11 indicadores populacionais e de comunidades que pudesse indicar o grau de resiliência dos habitats contidos nos segmentos de vídeo. A utilidade desses indicadores para o fim desejado foi avaliada sob diferentes ângulos e submetida a apreciação independente de quatro cientistas atuantes na área de ecologia marinha. Após esse processo de crítica foram selecionados oito critérios considerados úteis e listados na tabela 3. Para cada critério foram atribuídos três “níveis de qualificação” onde o nível com escore 1 correspondeu a uma categoria de baixa resiliência, escore 2, resiliência média e escore 3, alta resiliência.
Tabela 3. Definição dos critérios de resiliência. Inclui-se sua definição, sua importância, indicador e a orientação desse critério.

<table>
<thead>
<tr>
<th>CRITÉRIO</th>
<th>DEFINIÇÃO DO CRITÉRIO</th>
<th>IMPORTÂNCIA</th>
<th>INDICADOR DO CRITÉRIO</th>
<th>ORIENTAÇÃO DO CRITÉRIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Representatividade da riqueza total do habitat</td>
<td>Riqueza dos segmentos do perfil de vídeo em relação à riqueza total do habitat</td>
<td>Quanto maior a riqueza total em cada habitat, menor deveria ser a perturbação</td>
<td>(R_{s,h} = \frac{M_{s,h}}{M_h})</td>
<td>As atividades de exploração devem provocar mais alterações em segmentos de perfil de vídeo que melhor representam a riqueza de uma habitat/menos alterações em segmentos que pior representam a riqueza de uma habitat.</td>
</tr>
<tr>
<td>Índice de concentração da Riqueza</td>
<td>Concentração/dispersão espacial da riqueza entre os segmentos do perfil de vídeo dentro de cada habitat</td>
<td>Quanto maior a concentração da riqueza em cada habitat, menor deveria ser a perturbação</td>
<td>(ICR_{s,h} = \frac{M_{s,h} - \bar{M}_h}{\bar{M}_h})</td>
<td>As atividades de exploração devem provocar mais alterações em segmentos de perfil de vídeo que concentrem mais riqueza do habitat/menos alterações em segmentos que concentrem menos riqueza do habitat.</td>
</tr>
<tr>
<td>Índice de concentração da Densidade</td>
<td>Concentração/dispersão espacial da densidade da megafauna entre os segmentos do perfil de vídeo dentro de cada habitat</td>
<td>Quanto maior o número de indivíduos em cada habitat, menor deveria ser a perturbação</td>
<td>(ICD_{s,h} = \frac{D_{s,h} - \bar{D}_h}{\bar{D}_h})</td>
<td>As atividades de exploração devem provocar mais alterações em segmentos de perfil de vídeo com maior densidade dentro de cada habitat/menos alterações em segmentos com menor densidade dentro de cada habitat.</td>
</tr>
<tr>
<td>Modo de alimentação</td>
<td>Concentração/dispersão espacial de organismos que se alimentam de material em suspensão (suspensívoros) nos sítios</td>
<td>A função ecológica dos organismos suspensívoros em montanhas submarinas pode ser muito relevante considerando o aporte de matéria orgânica.</td>
<td>(MA_{s,h} = \frac{D_{s,h} - \bar{D}_h}{\bar{D}_h})</td>
<td>As atividades de exploração devem provocar mais alterações em segmentos de perfil de vídeo com maior densidade de organismos suspensívoros/menos alterações em segmentos com menor densidade de matéria orgânica.</td>
</tr>
</tbody>
</table>
segmentos do perfil de vídeo

alimento particulado suspenso nas massas de água advectado sobre os flancos da montanha. Podem integrar a matéria orgânica da coluna de água em superfície em matéria disponível para outros níveis tróficos e portanto sua perturbação poderia ter efeitos indiretos nas comunidades da região estudada

por m2 do segmento “s” do habitat “h”

\bar{D}_h – Densidade (número de indivíduos por m2) média do habitat “h”

organismos suspensívoros.

Habitat biogênico e organismos de crescimento lento

Concentração/dispersão espacial de morfotipos estruturantes (que servem de habitats para outros morfotipos) e presença de organismos de crescimento lento nos segmentos do perfil de vídeo

Organismos estruturantes são responsáveis por outros níveis tróficos, extrai-los irão destruir esses ambientes. Os organismos de crescimento lento, se forem extraídos, o ambiente poderá demorar centenas de anos para se recompor

HBCL$_{s,h}$ = $\frac{D_{sh} - \bar{D}_h}{\bar{D}_h}$

D_{sh} – Densidade (número de indivíduos por m2) do segmento “s” do habitat “h”

\bar{D}_h – Densidade (número de indivíduos por m2) média do habitat “h”

As atividades de exploração devem provocar mais alterações em segmentos de perfil de vídeo com maior densidade de organismos estruturantes e de crescimento lento/menos alterações em segmentos com menor densidade de organismos estruturantes e de crescimento lento.

Presença de morfotipos exclusivos (endemismo)

Relação de morfotipos exclusivos/não exclusivos dos habitats bentônicos observados nos segmentos do perfil de vídeo

Os organismos exclusivos podem estar condicionados a existir somente em determinados habitats

Número de morfotipos exclusivos/não exclusivos nos segmentos do perfil de vídeo. Onde, exclusivos indicam um indivíduo no trecho; Raros, indicam dois indivíduos no trecho; e Não Raros, indicam mais que dois indivíduos no trecho.

As atividades de exploração devem provocar mais alterações em segmentos de perfil de vídeo com maior número de morfotipos exclusivos/menos alterações em segmentos com menor número de morfotipos exclusivos.

Presença de peixes bentopelágicos

Presença de peixes bentopelágicos nos segmentos do perfil de vídeo

A presença dos peixes, significa que a energia está sendo repassada para outros níveis. Eles são indicadores de níveis tróficos superiores

Abundância de peixes bentopelágicos associados aos habitats nos segmentos do perfil de vídeo

As atividades de exploração devem provocar mais alterações em segmentos de perfil de vídeo com maior abundância de peixes bentopelágicos/menos alterações em segmentos com menor abundância de
Tipos de substrato | Presença de substratos consolidados, não consolidados e mistos nos segmentos do perfil de vídeo | Com substratos consolidados, mais modificações haverão no ambiente | Cobertura relativa de substratos consolidados, não consolidados e mistos nos segmentos de vídeo | As atividades de exploração devem provocar mais alterações em segmentos de perfil de vídeo com maior cobertura relativa de substratos consolidados e mistos/menos alterações em segmentos com menor cobertura relativa de substratos consolidados e mistos.
Em geral, para a delimitação dos níveis de qualificação dos critérios quantitativos foram feitas distribuições de frequência acumulada das variáveis que os representam (por ex. densidades) e utilizados três quartis para delimitar os níveis de qualificação. Para o critério “Presença de peixes bentopelágicos” foi utilizado o número de peixes do segmento; para o “Tipos de substrato”, a porcentagem de cobertura; e para o critério “Presença de morfotipos exclusivos” considerou-se o número de segmentos de vídeo em que cada morfotipo de um segmento de vídeo ocorria. Assim um segmento que continha ao menos um morfotipo que não ocorria em nenhum outro segmento (exclusivo ou endêmico) de um determinado habitat recebia qualificação 1. Segmentos que continham ao menos um morfotipo que ocorria em até dois segmentos foram considerados raris e qualificaram o segmento como 2. Segmentos que não continham morfotipos exclusivos ou raros, qualificaram como 3.

Quando houve falta de informação como no caso do habitat 2 para o critério de densidade, a categoria recebeu escore 1 de baixa resiliência no critério como abordagem precatória. Todos os atributos de resiliência e seus respectivos níveis de qualificação estão demonstrados na tabela 4.

Tabela 4. Os Critérios de resiliência e seus respectivos níveis de qualificação estimados para pontuar e determinar a resiliência dos trechos representantes da Elevação do Rio Grande.

<table>
<thead>
<tr>
<th>CRITÉRIO</th>
<th>PONTUAÇÃO</th>
<th>QUALIFICAÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Representatividade da riqueza total do habitat</td>
<td>> 0,08</td>
<td>0,05 – 0,08</td>
</tr>
<tr>
<td>Índice de concentração da Riqueza</td>
<td>> 0,2</td>
<td>-0,3 – 0,2</td>
</tr>
<tr>
<td>Índice de concentração da Densidade</td>
<td>> 0,1</td>
<td>-0,6 – 0,1</td>
</tr>
<tr>
<td>Modo de alimentação</td>
<td>> 0,1</td>
<td>-0,3 - -0,1</td>
</tr>
<tr>
<td>Habitat biogênico e organismos de crescimento lento</td>
<td>> 0,1</td>
<td>0,1 - -0,9</td>
</tr>
<tr>
<td>Presença de morfotipos exclusivos</td>
<td>1 (exclusivos)</td>
<td>2 (raros)</td>
</tr>
<tr>
<td>Presença de peixes bentopelágicos</td>
<td>> 5</td>
<td>2 – 5</td>
</tr>
<tr>
<td>Tipos de substrato (consolidado)</td>
<td>Duro > 50%</td>
<td>Misto > 50%</td>
</tr>
</tbody>
</table>

3.4.3.1.2 SUSCEPTIBILIDADE (s)

Para a seleção dos critérios de suscetibilidade, foi levado em conta 6 indicadores associadas às atividades de exploração demarcadas no Plano de Trabalho, que pudessem indicar a chance de cada segmento de vídeo receber alguma dessas atividades e eventualmente
seu impacto. Assim os atributos de susceptibilidade tentam demonstrar em que medida as operações da exploração afetam os habitats presentes na Elevação do Rio Grande. Estes atributos também sofreram o mesmo processo de crítica de cientistas independentes e todos acabaram sendo mantidos como úteis (Tabela 5).

Também foram atribuídos três níveis de qualificação para todos os seis atributos (Tabela 6), afim de representar os diferentes impactos negativos que os equipamentos podem causar no ambiente. Quando os trechos são muito susceptíveis em determinados critérios receberam escore 3 de alta susceptibilidade, enquanto os trechos com susceptibilidade média receberam escore 2, e por fim, receberam escore 1 os que apresentaram baixa susceptibilidade em relação a cada critério. Nesse contexto, para a delimitação dos níveis de qualificação para os atributos “profundidade”, “declividade” e “posição em relação à área requisitada” foram realizadas as distribuições de frequência acumulada das variáveis e delimitados os três percentis como previamente explicado. Para o critério “Presença de crosta”, “Rugosidade/Relevo” foi utilizado a porcentagem de cobertura da imagem, e para a “Relevância do ambiente para os amostradores” foi utilizado a quantidade de amostradores que poderiam ser operados nos habitats de um segmento de vídeo.

Além dos níveis de qualificação, ouve também a distribuição de pesos para cada critério, de acordo com a maior importância de cada critério de resiliência e susceptibilidade, onde 1 é menor importância, 2= importância intermediária e 3= maior importância. Foi solicitado que mais dois pesquisadores atribuissem uma nota de 1 a 3 para cada atributo e calculadas as médias desse escore de forma a se ordenar os atributos por sua importância percebida pelos pesquisadores em qualificar a vulnerabilidade dos habitats presentes nas imagens de vídeo. A partir deste ordenamento foram atribuídos pesos aos atributos e recalculadas as médias de susceptibilidade, resiliência e vulnerabilidade. A partir disso, foi comparado os resultados dos critérios com a distribuição dos pesos e sem a distribuição, ou seja, todos recebendo o mesmo peso.
Tabela 5. Definição dos critérios de Susceptibilidade. Inclui-se sua definição, sua importância, indicador e a orientação desse critério.

<table>
<thead>
<tr>
<th>CRITÉRIO</th>
<th>DEFINIÇÃO DO CRITÉRIO</th>
<th>IMPORTÂNCIA</th>
<th>INDICADOR DO CRITÉRIO</th>
<th>ORIENTAÇÃO DO CRITÉRIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profundidade</td>
<td>Profundidade do ambiente bentônico nos segmentos do perfil de vídeo</td>
<td>Quanto maior a profundidade, mais difícil poderá ser a operação dos equipamentos para exploração</td>
<td>Profundidade média do segmento no perfil de vídeo</td>
<td>As atividades de exploração devem ser mais frequentes em segmentos de vídeos menos profundos/menos frequentes em seguimentos de vídeos mais profundos</td>
</tr>
<tr>
<td>Declividade</td>
<td>Inclinação do ambiente bentônico nos segmentos do perfil de vídeo</td>
<td>Quanto maior a declividade, mais difícil poderá ser a operação dos equipamentos para exploração</td>
<td>Razão entre o gradiente de profundidade (diferença entre a profundidade inicial e final do segmento do perfil de vídeo) e a distância linear do segmento de perfil de vídeo</td>
<td>As atividades de exploração devem ser mais frequentes em segmentos de vídeos com menor declividade/menos frequentes em seguimentos de vídeos com maior declividade</td>
</tr>
<tr>
<td>Presença de crosta</td>
<td>Presença de CFRCs (crotas) que são o interesse para exploração nos segmentos no perfil de vídeo</td>
<td>Onde há presença de crostas, maior a chance dos equipamentos estarem presentes</td>
<td>Percentual de cobertura de crostas nos segmentos no perfil de vídeo</td>
<td>As atividades de exploração devem ser mais frequentes em segmentos de vídeos com maior cobertura de crostas/menos frequentes em seguimentos de vídeos com menor coberturas de crostas</td>
</tr>
<tr>
<td>Rugosidade/Relevo</td>
<td>Variação do relevo, irregularidades do substrato nos segmentos no perfil de vídeo</td>
<td>Quanto maior a rugosidade, mais difícil poderá ser a operação dos equipamentos para exploração</td>
<td>Percentual de cobertura de substrato rugoso/ alto relevo, nos segmentos no perfil de vídeo</td>
<td>As atividades de exploração devem ser mais frequentes em segmentos de vídeos com menor cobertura de substrato rugoso de alto relevo/menos frequentes em seguimentos de vídeos com maior cobertura de substrato rugoso de alto relevo</td>
</tr>
<tr>
<td>Posição em relação à área requisitada</td>
<td>Posição dos segmentos de vídeo em relação aos blocos requisitados pelo Brasil à ISBA para exploração científica</td>
<td>Quanto mais próximo das áreas requisitadas, maior a chance dos equipamentos estarem presentes</td>
<td>Distância linear entre o segmento de vídeo e o bloco requisitado mais próximo</td>
<td>As atividades de exploração devem ser mais frequentes em segmentos de vídeos dentro ou próximo da área requisitada/menos frequentes em segmentos de vídeos fora ou distante da área requisitada</td>
</tr>
<tr>
<td>Relevância do</td>
<td>Chance da área ser</td>
<td>Dependendo das</td>
<td>Relação entre atributos dos segmentos</td>
<td>As atividades de exploração devem ser</td>
</tr>
<tr>
<td>ambiente para os amostradores amostrada por mais de um tipo de equipamento nos segmentos do perfil de vídeo</td>
<td>características do ambiente, mais de um equipamento poderão ser utilizados em uma área determinada.</td>
<td>no perfil de vídeo com objetivos geológicos e linha de base ambiental e com as restrições de uso</td>
<td>mais frequentes em segmentos de vídeos onde o ambiente bentônico contenha mais características de interesse do estudo e menos restrições às operações dos amostradores/menos frequentes em segmentos de vídeos onde o ambiente bentônico contenha menos características de interesse do estudo e mais restrições às operações dos amostradores</td>
<td></td>
</tr>
</tbody>
</table>
Tabela 6. Os critérios de susceptibilidade e seus respectivos níveis de qualificação estimados para pontuar e determinar a susceptibilidade dos trechos representantes da Elevação de Rio Grande.

<table>
<thead>
<tr>
<th>CRITÉRIO</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profundidade</td>
<td>> 910</td>
<td>870 – 910</td>
<td>< 870</td>
</tr>
<tr>
<td>Declividade</td>
<td>> 0,1</td>
<td>0,05 – 0,1</td>
<td>< 0,05</td>
</tr>
<tr>
<td>Presença de crosta</td>
<td>Ausência > 80%</td>
<td>Misto > 50%</td>
<td>Presença > 50%</td>
</tr>
<tr>
<td>Rugosidade/Relevo</td>
<td>Rugoso > 50%</td>
<td>Misto > 50%</td>
<td>Não rugoso > 50%</td>
</tr>
<tr>
<td>Posição em relação à área requisitada</td>
<td>> 1,1</td>
<td>0,2 – 1,1</td>
<td>< 0,2</td>
</tr>
<tr>
<td>Relevância do ambiente para os amostradores</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

3.4.3.1.3 ESTIMATIVA DA VULNERABILIDADE RELATIVA (v)

Com os níveis de qualificação definidos para cada critério de resiliência e susceptibilidade, procedeu-se com a pontuação de cada segmento por todos os critérios. Vale ressaltar que para resiliência, a escala de 1 a 3 corresponde a uma classificação de menor para maior resiliência, respectivamente. Para susceptibilidade a escala de 1 a 3 indica uma classificação de susceptibilidade menor para maior respectivamente. A partir das médias dos escores de resiliência e de susceptibilidade, estimou-se a vulnerabilidade ou risco que cada grupo ofereceu a elas. Essa estimativa foi feita de duas formas:

1. Representação espacial: Plotaram-se as médias de resiliência (U_R) e susceptibilidade (s) em um gráfico bi-dimensional, sendo que o eixo das abcissas (x) foi representado pela média de resiliência e o eixo das ordenadas (y) representado pela média da susceptibilidade de cada categoria. Destaca-se que para este trabalho o eixo x foi invertido, no qual as maiores médias de (U_R) estiveram posicionadas próximo do eixo y, enquanto baixas médias de (U_R) ficaram posicionadas ao lado direito do gráfico. Ao passo que no eixo y, uma média baixa de (s) esteve posicionada próximo ao eixo x e uma média alta de (s) na parte superior do mesmo (Figura 8). A análise da vulnerabilidade se deu pela posição que cada categoria apresenta no espaço bi-dimensionais através do plot. Categorias posicionadas na parte superior direita tiveram uma maior vulnerabilidade ou risco de sofrerem um impacto pela exploração. Já as categorias de trechos que se posicionaram próximos à origem dos eixos, ou na parte inferior esquerda do gráfico apresentaram menor vulnerabilidade ou estiveram sob menor risco. Foi construído um gráfico dentro do
programa SYSTAT™, para facilitar a interpretação gráfica dos resultados, no qual foram inseridas isolinhas de contorno representando diferentes níveis de vulnerabilidade (v), as linhas têm valores de 0,5 a 2,75 e são referentes às diversas combinações de (Ur) e (s), que resultam em valores de (v) iguais. Para obtenção dessas isolinhas, foi inserida no programa a equação da vulnerabilidade, descrita no item (2).

(2) Representação numérica: A equação da vulnerabilidade resulta em um valor numérico, que auxilia a representação gráfica no momento de se avaliar e interpretar os resultados. Definida como: \(V = \sqrt{((U_{r})-3)^2 + ((s)-1)^2} \).

Onde que, \(V \) seria vulnerabilidade, \((U_{r})\) resiliência média e \((s)\) susceptibilidade média. Essa equação representa a distância euclidiana dos pontos até a origem dos eixos. Ela é relevante, pois traz valores numéricos de vulnerabilidade para os trechos, de maneira que diferentes posições dos componentes da análise no gráfico possam ter valores de vulnerabilidade iguais. Essa equação foi inserida no programa feito para criar os gráficos (SYSTAT™), que calcula e plota as isolinhas de vulnerabilidade.

Com os valores da vulnerabilidade, foram construídas áreas de riscos ao longo dos perfis 6K1338 e 6K1339 com a posição dos habitats 1, 2, 3, 4, 5 e 6, diferenciando também a posição do Graben, da encosta e do Platô. Os pontos posicionados em verde no perfil
representam a vulnerabilidade “baixa”, amarelo representam a vulnerabilidade “intermediária baixa”, laranja a vulnerabilidade “intermediária alta” e vermelho a vulnerabilidade “alta”.
4. RESULTADOS

4.1 HABITATS BENTÔNICOS DE ALFA

Os perfis de vídeo analisados percorreram trechos da paisagem submarina em três áreas do platô de Alfa, ao longo dos quais habitats distintos foram delimitados a partir da topografia e dos tipos de substrato visíveis nas imagens submarinas. Parte desses habitats foram descritos em Perez et al. (submetido) e estão caracterizados abaixo.

- **Habitat 1.** Percorrido durante os minutos iniciais do perfil 6K1338 sobre o fundo da depressão central de Alfa (*graben*) entre 1233 e 1047 m de profundidade. Fundo de relevo suave coberto por camada de sedimento biogênico, cuja superfície apresentava marcas de onda regulares. Em alguns trechos essa camada se tornava mais fina e era possível observar o afloramento de rocha basáltica. Habitat com poucos invertebrados suspensívoros e moderada de peixes bentopelágicos (Figura 9).

- **Habitat 2.** Percorrido no perfil 6K1338 na sequência do habitat 1, durante a subida da parede norte da depressão central de Alfa. Fundo de relevo íngreme e abrupto variando de 1079 e 749 m de profundidade e caracterizado por substrato duro formado por afloramentos de basalto, normalmente cobertos por CFRCs, e em alguns pontos cobertos por fina camada de sedimento biogênico. Concentração significativa de organismos bentônicos suspensívoros e peixes bentopelágicos (Figura 9).

- **Habitat 3.** Percorrido por um breve período no perfil 6K1338 na sequência do habitat 2, representando a borda da parede norte da depressão central de Alfa, entre 749 e 735 m de profundidade. Fundo de relevo plano, com composição mista de substrato duro e inconsolidado, com a presença de afloramentos de basalto em forma de pavimento e geralmente cobertos por CFRCs, intercalados por piscinas de sedimento. Presença de organismos bentônicos suspensívoros e peixes bentopelágicos (Figura 9).

- **Habitat 4.** Trecho final e mais longo do perfil 6K1338 sobre o platô de Alfa. Fundo plano entre 735 e 632 m de profundidade. Substrato duro formado por pavimentos de rocha carbonática de coloração clara. O ambiente era visivelmente influenciado por fortes correntes e continha frequente presença de pequenos invertebrados suspensívoros e muitos peixes bentopelágicos (Figura 9).

- **Habitat 5.** Trecho inicial do perfil 6K1339, entre 921 e 911 m de profundidade, sobre o platô de Alfa próximo da margem norte da depressão central. O fundo era plano e coberto por espessa camada de sedimentos de coloração amarelada e com superfície delineada por
marcas de onda pouco regulares e frequentemente “cruzadas”. Escassa presença de megafauna (Figura 10).

- **Habitat 6.** Trecho final do perfil 6K1339, entre 911 e 872 m de profundidade, estendendo-se em direção à borda da depressão central. Fundo plano e misto, similar ao habitat 3, composto por pavimentos de rocha basáltica (geralmente cobertos por CFRCs) intercalados por extensas piscinas de sedimento. Megafauna escassa (Figura 10).

- **Habitat 7.** Percorrido durante os trechos iniciais e finais do perfil YKDT157, correspondendo à borda e o talude interno do *pockmark* explorado. O substrato é misto com cobertura sedimentar carbonática, ao longo da borda e maior parte do talude, e grande concentração de rochas carbonáticas arredondadas no sopé do talude. Em algumas áreas essas rochas apresentavam perfurações centrais (Figura 11).

- **Habitat 8.** Corresponde ao trecho percorrido no centro do *pockmark* ao longo do perfil YKDT157. Fundo plano com cobertura sedimentar carbonática. Em alguns trechos a superfície do sedimento apresentava grande densidade de estruturas circulares, possivelmente formadas por pontos de extrusão de gás. Presença frequente de peixes Anguilliformes (Figura 11).

Cada habitat, com exceção daqueles presentes no perfil YKDT157, foi representado por um número de imagens extraídas do registro de vídeo produzido pela câmera 1, variando de 70 a 666 por habitat dependendo de seu tempo de observação (Tabela 7). Estas imagens foram submetidas ao processo de seleção quanto aos critérios de visibilidade e relevo a partir do qual foram rejeitadas 272 imagens, mantendo-se para análise um total de 2.044 imagens (Tabela 7).

<table>
<thead>
<tr>
<th>Perfis</th>
<th>Habitats</th>
<th>Total de Imagens Descartadas</th>
<th>Total de Imagens Analisadas</th>
<th>Total de amostras (agrupamento de imagens)</th>
<th>Amostras sorteadas (análises estatísticas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6K1338</td>
<td>Habitat 1</td>
<td>180</td>
<td>156</td>
<td>39</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Habitat 2</td>
<td>8</td>
<td>199</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Habitat 3</td>
<td>5</td>
<td>65</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Habitat 4</td>
<td>35</td>
<td>513</td>
<td>126</td>
<td>88</td>
</tr>
<tr>
<td>6K1339</td>
<td>Habitat 5</td>
<td>28</td>
<td>461</td>
<td>115</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Habitat 6</td>
<td>16</td>
<td>650</td>
<td>162</td>
<td>113</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>272</td>
<td>2044</td>
<td>511</td>
<td>353</td>
</tr>
</tbody>
</table>

4.2 COMUNIDADES DA MEGAFUNA BENTÔNICA DE ALFA

4.2.1 ANÁLISE DESCRITIVA

Foram encontrados nos três perfis (e em imagens de todas as câmeras disponíveis) um total de 172 morfotipos de organismos da megafauna bentônica (APÊNDICE A). Cerca de 45% destes foram classificados nos filos Cnidaria e Porifera (42 e 34, respectivamente) (Figura 12). Também foram os filos mais abundantes, representando 62% (2903 organismos) de todos os organismos da megafauna visualizados e enumerados nos perfis 6K1338 e 6K1339 (4682 organismos). O restante dos morfotipos foram divididos em equinodermas (33), artrópodes (19), moluscos (8) e chordata (1). Foram identificados 11 tipos marcas características de bioturbação (APÊNDICE A) e 24 morfotipos não puderam ser classificados com segurança em nenhum nível.

![Figura 12. Número de morfotipos visualizados nos perfis 6K1338, 6K1339 e YKDT157 realizados pelo submersível Shinkai 6500 e a câmera rebocada profunda YKDT no platô de Alfa, Elevação do Rio Grande, agrupados pelos grupos zoológicos (Filos).](image)

Ao longo do perfil 6K1338 (Figura 13), cnidários foram frequentes no habitat 1, em particular o coral scleractínio solitário Caryophyllia cf. smithii (Morfotipo 789C1 – APÊNDICE A) presente em áreas onde a camada de sedimento era fina e a rocha basáltica aflorava. O habitat 2, encontrado no terreno escarpado da parede lateral da depressão central de Alfa, apresentou a maior diversidade de grupos de invertebrados bentônicos sobretudo em associação a uma espécie de porífero dominante identificada como Sarostegia oculata Topsent, 1904 (morfotipo 89P18, APÊNDICE A). Esta esponja Hexactinellida tem estrutura...
rígidamente ramificada com forma arborescente, comportando pequenos zoantídeos como simbiontes. A espécie concentrou-se no setor superior da escarpa projetando suas ramificações para o centro da depressão central de Alfa e formando um “jardim de esponjas” (Hajdu et al., submetido) (Figura 13) que se estendeu para o habitat 3. Neste habitat Sarostegia foi também dominante, porém a diversidade de grupos da megafauna bentônica foi menor (Figura 13). No platô carbonático de Alfa (habitat 4), além Sarostegia de menor tamanho e ramificação (Hajdu et al., submetido), observou-se uma elevada concentração de pequenos corais não identificados (morfotipos 8C8 e 8C41, APÊNDICE A).

O habitat 5 sedimentar do perfil 6K1339 teve baixa ocorrência de megafauna bentônica, com exceção de alguns poríferos e cnidários, principalmente Caryophyllia (Figura 14). Já o habitat 6 deste mesmo perfil, com presença de pavimentos de rocha (normalmente cobertos de CFRCs), reuniu um conjunto maior de organismos da megafauna bentônica, com predominância de poríferos e cnidários (Figura 14). Entre os poríferos foram mais frequentes Sarostegia e um morfotipo não identificado (morfotipo 9P24, APÊNDICE A). Cnidários foram mais diversos neste habitat, com ocorrências de 16 morfotipos distintos incluindo hidrozoários, corais moles e anêmonas.

O perfil YKDT157, que percorreu a borda e o interior de um pockmark, apresentou uma escassa presença de megafauna bentônica em geral, mas principalmente no habitat 7. No interior do pockmark (habitat 8) a ocorrência de megafauna foi maior com um ligeiro domínio de equinodermos e artrópodes (Figura 15). Entre os primeiros foram registrados oito morfotipos das classes Echinoidea, Asterioidea, Holothuroidea e Crinoidea. Entre os artrópodes foram visualizados cinco morfotipos, em geral camarões com destaque para dois do gênero Nematocarcinus (morfotipos 79A10 e 79A12, APÊNDICE A).
Figura 13. Frequência de ocorrência de morfotipos da megafauna bentônica no perfil de vídeo 6K1338 do submersível Shinkai 6500, sobre o platô de Alfa, Elevação do Rio Grande. As frequências são agrupadas por habitat e grupo zoológico considerado.

Figura 14. Frequência de ocorrência de morfotipos da megafauna bentônica no perfil de vídeo 6K1339 do submersível Shinkai 6500, sobre o platô de Alfa, Elevação do Rio Grande. As frequências são agrupadas por habitat e grupo zoológico considerado.
4.2.2 PADRÕES ECOLÓGICOS

4.2.2.1 DENSIDADE DOS ORGANISMOS DA MEGAFAUNA

As análises da abundância da megafauna bentônica envolveram a estimativa da densidade de organismos (indivíduos por metro\(^2\)) em cada amostra extraída dos habitats dos perfis 6K1338 e 6K1339 e o estudo da distribuição das densidades amostrais em um conjunto de amostras sorteadas aleatoriamente do total de cada habitat (cerca de 70% do total). Essas distribuições estão apresentadas sob a forma de BOX-PLOT (Figura 16).

Foi possível verificar que abundância mudou em diferentes habitats ao longo do caminho do submersível, sendo mais abundantemente observada no perfil 6K1338 com mediana de 0,45 indivíduos/m\(^2\) do que no perfil 6K1339 com mediana 0,01 indivíduos/m\(^2\) (Figura 16A). Dentro dos perfis, as maiores densidades foram observadas no habitat 4 localizado no platô carbonático de Alfa, com mediana de 0,55 indivíduos/m\(^2\), seguido pelo habitat 3, com mediana de 0,15 indivíduos/m\(^2\) e habitat 1, localizado no fundo da depressão central com mediana 0,01 indivíduos/m\(^2\) (Figura 16B). No perfil 6K1339 as densidades do habitat 6 foram marginalmente maiores que do habitat 5 (Figura 16C).
As densidades dos perfis e dos habitats do perfil 6K1339 foram comparadas pelo teste não-paramétrico de Mann-Whitney (2 populações), enquanto que as densidades dos habitats do perfil 6K1339 foram comparadas pelo teste não-paramétrico de Kruskal-Wallis (> 2 populações). Em todos os testes utilizou-se o intervalo de confiança de 95%, sendo que as hipótese foram: H₀: Todas as populações (perfis ou habitats) possuem funções de distribuição de densidade amostral iguais, e H₁: Ao menos duas das populações (perfis ou habitats) possuem funções de distribuições de densidade amostral diferentes. Para todos os testes o valor-\(p \) foi menor ou igual a 0,001 (Tabela 8), indicando diferenças significativas nas densidades entre perfis e habitats.

Tabela 8 – Valores de probabilidade \(p \) para os testes Kruskal-Wallis e Mann-Whitney comparando as densidades dos organismos da megafauna bentônica dos perfis 6K1338 e 6K1339 e seus habitats.

<table>
<thead>
<tr>
<th>Teste</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfil 6K1338</td>
<td>Habitats 1 x 3 x 4</td>
</tr>
<tr>
<td>Perfil 6K1339</td>
<td>Habitats 5 x 6</td>
</tr>
<tr>
<td>Todos Perfis</td>
<td>6K1338 x 6K1339</td>
</tr>
</tbody>
</table>

4.2.2.2 DIVERSIDADE \(\alpha \)

A análise da “riqueza” de morfotipos nos perfis e habitats de Alfa utilizou a matriz de dados de presença-ausência de morfotipos para a construção de curvas de rarefação, tomando o número de amostras como medida de esforço amostral, (Figura 17). Em termos gerais as
curvas não apresentam uma fase de estabilização indicando que a observação dos referidos perfis e habitats foi insuficiente.

Nos perfis 6K1338 e 6K1339 (Figura 17A), durante o período de observação, o perfil 6K1338 apresentou uma maior riqueza de morfotipos que o observado no perfil 6K1339. No perfil 6K1338 (Figura 17B), foram registrados 34 morfotipos no habitat 4, seguido pelo habitat 3 com 13 morfotipos, habitat 2, com 17 morfotipos, e o habitat 1 com 11 morfotipos. A comparação entre habitats a partir das curvas de rarefação e tomando-se um mesmo número de amostras (por exemplo 10 amostras) sugere que os habitats 3 e 4 apresentaram a riquezas de morfotipos semelhantes e as maiores desse perfil. No entanto, considerando um número maior de amostras estima-se que o habitat 2, na escarpa da depressão central de Alfa, de maior complexidade e visualização mais difícil, pode apresentar valores ainda maiores de riqueza. No Perfil 6K1339 (Figura 17C), o habitat 6 apresentou uma maior riqueza de morfotipos que o observado no habitat 5, e comparável ao habitat 4 do perfil 6K1338.

Riqueza e abundância de organismos na megafauna bentônica foram analisadas conjuntamente para estimar a diversidade de morfotipos entre perfis e habitats através do cálculo de índices de diversidade e equitabilidade (Tabela 9). Nesta análise o Habitat 2 do perfil 6K1338 foi suprimido a partir de critérios explicados anteriormente.

Tabela 9 – Índices de diversidade e equitabilidade para os habitats dos perfis 6K1338 e 6K1339. Inclui-se os Índices de Simpson, Shannon e Equitabilidade.

<table>
<thead>
<tr>
<th>Habitats</th>
<th>Riqueza (S)</th>
<th>Individuos</th>
<th>Simpson-1 (D)</th>
<th>Shannon (H)</th>
<th>Equitabilidade (E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>32</td>
<td>0,8125</td>
<td>2,035</td>
<td>0,8488</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>128</td>
<td>0,2845</td>
<td>0,7809</td>
<td>0,3045</td>
</tr>
<tr>
<td>4</td>
<td>33</td>
<td>3763</td>
<td>0,5915</td>
<td>1,178</td>
<td>0,337</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>32</td>
<td>0,8945</td>
<td>2,497</td>
<td>0,9006</td>
</tr>
<tr>
<td>6</td>
<td>39</td>
<td>126</td>
<td>0,8486</td>
<td>2,669</td>
<td>0,7286</td>
</tr>
</tbody>
</table>

Os habitats 5, 6 e 1 apresentaram-se como mais diversos e mais equitativos (Tabela 9). O habitat 4, apesar da elevada riqueza observada foi caracterizado como pouco diverso pelos índices utilizados, devido ao padrão de dominância (ver abaixo) e a consequente baixa equitabilidade (tabela 9).
Figura 17. Curvas de rarefação de morfotipos construídas para os perfis 6K1338 e 6K1339 e seus habitats.

As proporções numéricas dos morfotipos dentro dos habitats de cada perfil foram apresentadas em Curvas de Dominância (Figura 18). Os maiores níveis de dominância foram observados no habitat 4, onde o morfotipo 8C11 predominou em todas as amostras, e habitat
3 o porifero Sarostegia (morfotipo 89P18) foi dominante (Figura 18A). Os padrões de dominância foram menos representativos nos habitats do perfil 6K1339, mas com a ressalva de certa dominância de dois poríferos no habitat 6, Sarostegia e morfotipo 9P24 (Figura 18B).

4.2.2.3 ANÁLISE DA COMPOSIÇÃO DA MEGAFAUNA BENTÔNICA

Através do cálculo de índices de similaridade de Bray-Curtis entre amostras de cada habitat procedeu-se a aplicação do Escalonamento Multidimensional Não-métrico (MDS) (Figura 19) e a análise de Cluster (Figura 20) a partir da qual foi possível obter uma representação gráfica das semelhanças da composição dos morfotipos entre todas as amostras. No primeiro caso o valor de STRESS foi 0,03 resultando em uma representação adequada de grupos de morfotipos (CLARKE & WARWICK, 2001).

Os agrupamentos observados em ambas as técnicas apresentaram aderência satisfatória com a divisão de habitats (Figuras 19 e 20). O destaque é o habitat 4 (perfil
6K1338) visivelmente desconectado dos demais habitats (Figuras 19 e 20), onde os morfotipos que se localizam nesse habitat, só se encontram neste, diferenciando dos demais habitats. Os habitats 1 e 6 apresentam agrupamentos menos consistentes indicando um maior nível de compartilhamento de espécies com os demais habitats.

As semelhanças/diferenças na composição de morfotipos foram testadas a partir da análise PERMANOVA definindo-se como fatores de agrupamento: habitats, tipos de fundo e estratos de profundidade. Para esta análise foram utilizadas 999 permutações aleatórias, onde se verificou efeitos significativos de todos os fatores na composição de morfotipos (Tabela 10). Testes pareados realizados a posteriori, ressaltaram as diferenças significativas entre todos os níveis dos fatores de agrupamento (P = 0,001).
Tabela 10. Análise do efeito dos habitats, tipos de substrato e estratos de profundidade na composição da megafauna bentônica nos perfis 6K1338 e 6K1339 realizados pelo submersível Shinkai 6500 sobre o platô de Alfa, Elevação do Rio Grande. GL, graus de liberdade, SQ, soma dos quadrados; QM, quadrado médio; F, valor da estatística F; P, probabilidade.

<table>
<thead>
<tr>
<th>Fontes de variação</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitat</td>
<td>4</td>
<td>90011</td>
<td>22503</td>
<td>269,25</td>
<td>0,001</td>
</tr>
<tr>
<td>Tipo de substrato</td>
<td>2</td>
<td>71888</td>
<td>35944</td>
<td>256,34</td>
<td>0,001</td>
</tr>
<tr>
<td>Profundidade</td>
<td>2</td>
<td>72651</td>
<td>36326</td>
<td>263,59</td>
<td>0,001</td>
</tr>
</tbody>
</table>

A análise SIMPER indicou níveis de similaridade superiores a 50% na composição de morfotipos das as amostras dos habitats 3 e 4, amostras de áreas com substrato sedimentar e em profundidades menores de 800 m (Tabela 11). Habitats, tipos de substrato e estratos de profundidade diferiram em composição de morfotipos em mais de 90% (Tabela 12).
Figura 20. Dendrograma resultante da análise de Agrupamento das amostras extraídas dos perfis de vídeo 6K1338 e 6K1339 obtidas pelo submersível Shinkai 6500 sobre o platô de Alfa, Elevação do Rio Grande, diferenciadas de acordo com o habitat de onde foram provenientes.
Tabela 11. Similaridade percentual da composição de morfotipos das amostras dos perfis 6K1338 e 6K1339 (Análise SIMPER) agrupados por habitats, tipo de substrato e estrato de profundidade.

<table>
<thead>
<tr>
<th>Fator de Agrupamento</th>
<th>Similaridade (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitat</td>
<td></td>
</tr>
<tr>
<td>6K1338 – 1</td>
<td>14,8</td>
</tr>
<tr>
<td>6K1338 – 3</td>
<td>52,35</td>
</tr>
<tr>
<td>6K1338- 4</td>
<td>64,44</td>
</tr>
<tr>
<td>6K1339 – 5</td>
<td>1,04</td>
</tr>
<tr>
<td>6K1339 – 6</td>
<td>3,65</td>
</tr>
<tr>
<td>Tipo de Substrato</td>
<td></td>
</tr>
<tr>
<td>Duro</td>
<td>2,51</td>
</tr>
<tr>
<td>Misto</td>
<td>5,12</td>
</tr>
<tr>
<td>Inconsolidado</td>
<td>51,08</td>
</tr>
<tr>
<td>Estrato de profundidade</td>
<td></td>
</tr>
<tr>
<td>< 800 m</td>
<td>51,98</td>
</tr>
<tr>
<td>800 – 1000 m</td>
<td>1,68</td>
</tr>
<tr>
<td>> 1000m</td>
<td>14,80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Habitats</th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>96,42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>99,3</td>
<td>97,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>97,73</td>
<td>99,81</td>
<td>99,76</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>98,95</td>
<td>96,62</td>
<td>99,96</td>
<td>99,85</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipos de Substrato</th>
<th>Duro</th>
<th>Misto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Misto</td>
<td>99,65</td>
<td></td>
</tr>
<tr>
<td>Inconsolidado</td>
<td>99,67</td>
<td>99,15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estrato de Profundidade</th>
<th><800 m</th>
<th>800 – 1000 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 800 m</td>
<td>99,67</td>
<td></td>
</tr>
<tr>
<td>800 – 1000 m</td>
<td></td>
<td>98,48</td>
</tr>
</tbody>
</table>

4.2.2.3.1 DIVERSIDADE β

Os padrões de mudança de composição de morfotipos entre habitats foram analisados a partir do cálculo do índice de Sorensen. Como esse cálculo requer dados de presença e ausência, o habitat 2 foi incluído na análise junto com os demais (Tabela 13). Os níveis de compartilhamentos de morfotipos foram inferiores a 26%, e particularmente menores entre habitats não-adjacentes, demonstrando uma elevada diversidade β, ou seja, um padrão acentuado de mudança na composição da megafauna bentônica entre habitats.

<table>
<thead>
<tr>
<th>Perfis</th>
<th>6K1338</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Habitats</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6K1338</td>
<td>1</td>
<td>100,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>20,0</td>
<td>100,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>16,7</td>
<td>19,0</td>
<td>100,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4,5</td>
<td>19,3</td>
<td>26,1</td>
<td>100,0</td>
</tr>
<tr>
<td>6K1339</td>
<td>5</td>
<td>7,4</td>
<td>4,4</td>
<td>6,9</td>
<td>16,3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>12,0</td>
<td>11,8</td>
<td>15,4</td>
<td>11,1</td>
</tr>
</tbody>
</table>

O mesmo índice também foi utilizado para construir o Diagrama Ternário, que além do nível de compartilhamento de morfotipos entre amostras de diferentes habitats também permite qualificar o padrão de mudança em termos de ganhos de novos morfotipos ou perdas/substituição por morfotipos novos. A primeira análise refere-se a todas as amostras do perfil 6K1338 contra todas as amostras do perfil 6K1339 (Figura 21). Há um elevado número de casos que o compartilhamento de morfotipos foi nulo entre as amostras (pontos na base do triângulo) bem como casos onde o nível de compartilhamento foi maior oscilando entre 10 e 60%. A concentração dos pontos à direita do triângulo, mostra uma tendência de retenção de morfotipos do perfil 6K1338 e acréscimo de morfotipos novos em direção ao perfil 6K1339 (à esquerda).

A mesma análise foi repetida considerando habitats adjacentes dentro dos perfis 6K1338 e 6K1339. No primeiro caso, a transição do habitat 1 para o habitat 2 (Figura 22A) mostra também um baixo compartilhamento, porém chegou até 100% o mais alto compartilhamento de espécies (a’), e um aumento percentual de espécies do habitat 2 (b’), indicando a tendência de perda de morfotipos do habitat 1 e substituição por morfotipos novos em direção ao habitat 2. A mesma tendência se observou nas outras duas transições de habitats, sendo que, entre os habitats 2 e 3 (Figura 22B) o compartilhamento de espécies foi de no máximo 50% e entre os habitats 3 e 4 (Figura 22C) o compartilhamento maior dos dados foi de 35%. Entre os habitats 5 e 6, perfil 6K1339, (Figura 23) o compartilhamento chegou até 100%, porém entre a maior parte das amostras a compartilhamento foi de 0%, demonstrando um alto grau de substituição de morfotipos entre os dois habitats do platô de Alfa.
Figura 21. Diagrama Ternário representando a comparação entre amostras dos perfis 6K1338 (esquerda) e 6K1339 (direita), quanto a composição de morfotipos da megafauna bentônica.
Figura 22. Diagrama Ternário representando a comparação entre amostras dos habitats 1 e 2 do perfil 6K1338 (A), habitats 2 e 3 do perfil 6K1338 (B), habitats 3 e 4 do perfil 6K1338 (C), quanto a composição de morfotipos da megafauna bentônica.
Figura 23. Diagrama Ternário representando a comparação entre amostras dos habitats 5 e 6 do perfil 6K1339, quanto a composição de morfotipos da megafauna bentônica.

4.3 MODELO PARA ANÁLISE DE RISCO DAS ATIVIDADES DE EXPLORAÇÃO NA ERG

A vulnerabilidade dos trechos dos perfis 6K1338 e 6K1339 às atividades de exploração de CFRCs propostas no Plano de Trabalho foi estimada de duas formas: a) considerando todos os critérios com o mesmo nível de importância na designação da vulnerabilidade; b) com a atribuição de pesos para cada critério de resiliência e susceptibilidade, seguindo as médias de pesos atribuídos por diferentes pesquisadores consultados (Tabela 14). Os valores de vulnerabilidade foram agrupados em quatro estratos assim definidos:

1. Alta Vulnerabilidade – trecho com vulnerabilidade \((v) > 2 \);
2. Vulnerabilidade Intermediária-alta – trecho com vulnerabilidade \((v) < 2,0 \) e \(> 1,5 \);
3. Vulnerabilidade Intermediária-baixa – trecho com vulnerabilidade \((v) < 1,5 \) e \(> 1,0 \);
4. Vulnerabilidade baixa – trecho com vulnerabilidade \((v) < 1,0 \).

Na análise sem atribuição de pesos aos critérios, a resiliência estimada para os trechos dos perfis 6K1338 e 6K1339, variou amplamente de forma que os trechos ficaram...
distribuídos nos dois hemiplanos (valores de 1,0 a 3,0) com uma tendência a concentrarem-se à direita com valores menores que 2,0 (Figura 24A). Quando se observa o eixo da susceptibilidade, nota-se grande parte dos trechos estão posicionados no hemiplano superior com valores acima de 1,8 (Figura 24A). A maior parte dos trechos está concentrada na faixa de vulnerabilidade Intermediária-alta e Intermediária-baixa (2,0 < v < 1,0), com poucos trechos sendo classificados como de alta vulnerabilidade (v > 2,0) ou baixa vulnerabilidade (v < 1,0). Dentro da faixa de vulnerabilidade Intermediária-alta encontram-se trechos de todos os habitats, com exceção habitat 1 (no fundo da depressão central de Alfa), com um certo predomínio dos habitats 6, 5 e 4 (todos na parte plana do platô). Os trechos de alta vulnerabilidade correspondem aos habitats 6 e 4, e os de baixa vulnerabilidade correspondem ao habitat 5.

Observando a vulnerabilidade ao longo do perfil 6K1338 (Figura 25A), todos os trechos do habitat 1 foram classificados como de vulnerabilidade intermediária-baixa. Na encosta da depressão central (habitat 2) a vulnerabilidade foi baixa nas áreas centrais mais íngremes e intermediária-baixa e intermediária-alta nos trechos marginais. Os trechos do habitat 3 apresentaram vulnerabilidade intermediária-alta nas margens e vulnerabilidade alta na região central. No habitat 4 a vulnerabilidade foi intermediária-alta na maior parte dos trechos com algumas áreas com vulnerabilidade alta no extremo deste habitat.
Figura 24. Distribuição espacial dos trechos dos habitats explorados ao longo dos perfis 6K1338 e 6K1339 no platô de Alfá, Elevação do Rio Grande, de acordo com escores de Resiliência, Suscetibilidade e vulnerabilidade às atividades de exploração de CFRCs. A, análise onde os critérios dos dois eixos tiveram pesos iguais; B, análise com atribuição de pesos aos critérios de acordo com percepção de importância dos mesmos.
Ao longo do perfil 6K1339 (Figura 26A) o habitat 5 variou de vulnerabilidade baixa no início do trecho, seguido por trechos com vulnerabilidade intermediária baixa e alta terminando com vulnerabilidade alta na migração do habitat 5 para o 6. O habitat 6 após a vulnerabilidade alta no início do trecho, variou de intermediária baixa à intermediária alta.

A análise com atribuição de pesos aos critérios de definição da Suscetibilidade e Resiliência seguiu o resultado do estudo de percepção dos cientistas com relação a importância relativa desses critérios. O peso médio dos critérios de acordo com essa percepção está apresentado na Tabela 14.

<table>
<thead>
<tr>
<th>Resiliência</th>
<th>Média dos Pesos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Representatividade da riqueza total do habitat</td>
<td>2,0</td>
</tr>
<tr>
<td>Índice de concentração da Riqueza</td>
<td>2,3</td>
</tr>
<tr>
<td>Densidade</td>
<td>2,0</td>
</tr>
<tr>
<td>Presença de morfotipos exclusivos</td>
<td>2,0</td>
</tr>
<tr>
<td>Modo de alimentação</td>
<td>2,3</td>
</tr>
<tr>
<td>Habitat biogênico e organismos de crescimento lento</td>
<td>3,0</td>
</tr>
<tr>
<td>Presença de peixes bentopelágicos</td>
<td>1,3</td>
</tr>
<tr>
<td>Tipos de substrato (consolidado)</td>
<td>2,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Suscetibilidade</th>
<th>Média dos Pesos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profundidade</td>
<td>1,3</td>
</tr>
<tr>
<td>Declividade</td>
<td>2,0</td>
</tr>
<tr>
<td>Presença de crosta</td>
<td>2,3</td>
</tr>
<tr>
<td>Rugosidade/Relevo</td>
<td>2,7</td>
</tr>
<tr>
<td>Posição em relação à área requisitada</td>
<td>3,0</td>
</tr>
<tr>
<td>Relevância do ambiente para os amostradores</td>
<td>2,3</td>
</tr>
</tbody>
</table>

A nova configuração espacial dos trechos (Figura 24B) apresentou algumas poucas mudanças com os trechos variando amplamente em resiliência e a suscetibilidade, e sem uma concentração aparente em nenhum quadrante. O habitat 1 teve um leve aumento na suscetibilidade de seus trechos, ao contrário do habitat 2 onde os trechos diminuíram de suscetibilidade. Poucos trechos do habitat 2 e 5 foram classificados com baixa vulnerabilidade.
enquanto que quatro trechos do habitat 6, um do 4 e um do habitat 5 estão posicionados na zona de alta vulnerabilidade às atividades de exploração. Entre as isolinhas \(v = 1 \) e \(v = 2 \), que denota uma vulnerabilidade “intermediária”, é onde encontram-se grande parte dos trechos.

![Diagrama A](image1)

![Diagrama B](image2)

Figura 25. Perfil 6K1338 no platô de Alfa, Elevação do Rio Grande com indicação dos níveis de vulnerabilidade dos trechos de cada habitat, delimitados por linhas verticais. A, análise do perfil onde tivera pesos iguais; B, análise do perfil com atribuição de pesos de acordo com percepção de importância dos mesmos.

Ao longo do perfil 6K1338 (Figura 25B) o habitat 1 teve alguns trechos com vulnerabilidade aumentada para intermediária alta, somado há vulnerabilidade intermediária baixa. No habitat 2 foi encontrado maiores concentrações trechos com vulnerabilidade baixa (centrais), mas também vulnerabilidade intermediária alta e intermediária baixa. O habitat 3 conteve somente trechos com vulnerabilidade intermediária alta e no habitat 4 houve uma diminuição geral da vulnerabilidade com aumento de trechos classificados como de intermediária baixa; somente o final do trecho foi caracterizado por vulnerabilidade alta.
Ao longo do perfil 6K1339 (Figura 26B), o habitat 5 apresentou trechos classificados em todas as faixas de vulnerabilidades, começando seu trecho com vulnerabilidade baixa, sequencialmente foi encontrado vulnerabilidade intermediária alta e intermediária baixa, e da metade para o final o aparecimento de trechos com vulnerabilidade alta. Também com a distribuição de pesos foi possível perceber uma área de transição do habitat 5 para o 6 de vulnerabilidade alta. O habitat 6 após a vulnerabilidade alta no início do trecho, variou de intermediária baixa à intermediária alta, chegando ao final do perfil verificou-se vulnerabilidade alta novamente.

Figura 26. Perfil 6K1339 no platô de Alfa, Elevação do Rio Grande com indicação dos níveis de vulnerabilidade dos trechos de cada habitat, delimitados por linhas verticais. A, análise do perfil onde tivera pesos iguais; B, análise do perfil com atribuição de pesos de acordo com percepção de importância dos mesmos.
5. DISCUSSÃO

5.1 HABITATS E COMUNIDADES

Em escalas macroecológicas, a fauna bentônica das montanhas submarinas tende a abranger o conjunto de espécies regionais, incluindo espécies presentes nas margens continentais (AVILA & MALAQUIAS 2003, SAMADI et al., 2007, MCCLAIN et al, 2010). Porém montanhas submarinas diferem em forma, tamanho, profundidade e localização e, assim, podem alterar as condições ambientais e os padrões biogeográficos locais, que repercutem na composição faunística de formas distintas (ROWDEN et al., 2010). Essas diferenças estão associadas com o processo formador das montanhas submarinas, as quais iniciam como pequenos vulcões na crosta oceânica e se elevam na medida em que o magma é depositado. Dependendo da provisão desse magma o vulcão é submetido a estresse gravitacional, que pode alterar a forma originalmente circular, e/ou atingir a superfície, onde seu cume pode ser aplanado devido a erosão pela ação das ondas (e.g. guyot) (WESSEL, 2007). Esses processos evolutivos determinam a morfologia e a composição do substrato oferecendo diversos habitats para comunidades micro- e macrobiológicas (STAUDIGEL & CLAGUE, 2010). Por exemplo, através da interação que a estrutura da montanha estabelece com o fluxo de massas de água, a sedimentação pode ficar restrita principalmente aos flancos, fazendo com que o cume apresente afloramentos rochosos, pouco comuns no oceano profundo, e que abrigam epifauna emergente (e.g. corais, esponjas, crinóides) típica das montanhas submarinas (STOCKS & HART, 2007). Estas características biofísicas, comuns a muitas montanhas profundas, justificaram a caracterização de um “bioma” de grande extensão no planeta (ETNOYER et al., 2010).

A Elevação do Rio Grande, particularmente Alfa, é resultados de processos formadores em grande escala espacial sendo submetida a uma longa e diversa sequência de eventos geológicos, incluindo vulcanismo, subsidência e erosão em superfície, que contribuíram para a geomorfologia atual, bem como a configuração dos tipos de substrato. Como resultado, tanto estudos exploratórios pretéritos como os perfis de vídeo produzidos pelo submersível Shinkai 6500 demonstraram uma diversidade considerável dos habitats, mesmo em espaços relativamente pequenos, caracterizados por profundidade, tipo de substrato e regime de correntes (MASETLLA, 2014). Em termos gerais, os habitats aqui descritos caracterizaram uma porção do platô de Alfa, onde afloramentos rochosos foram dominantes ao longo da margem e parede lateral da depressão central e observou-se um
acúmulo crescente de depósitos sedimentares a maiores distâncias desta depressão. Esta transição está marcada por habitats mistos, com a presença de afloramentos de basalto (normalmente recobertos por CFRCs) em forma de pavimento, intercalados por piscinas ou mesmo recoberto por finas camadas de sedimento. Na maior parte das áreas cobertas por sedimentos, marcas de ondas regulares indicaram o efeito contínuo de correntes, mesmo no fundo da depressão central de Alfa (MASTELLA, 2014), uma característica também encontrada em outras montanhas submarinas (KAUFMANN et al., 1989). Um pavimento de rocha carbonática, desprovida de sedimentos, também foi destaque em trechos relativamente rasos (~600 m) e influenciado por intensa dinâmica de correntes profundas. Ainda que os elementos do “bioma” tenham sido observados nos perfis examinados, a diversidade de habitats parece ter sido mais relevante que qualquer padrão estabelecido para as montanhas submarinas, e cuja influência nas comunidades da megafauna foram consistentemente reveladas.

A abundância da megafauna de regiões profundas, não quimiossintetizantes, está condicionada ao aporte de matéria orgânica oriunda da produção primária e secundária em superfície, e nesse sentido, é afetada pela localização e abrangência das áreas de maior ou menor produtividade do pelagial (REX & ETTER, 2010). No caso das montanhas submarinas, essa influência é também associada ao gradiente de profundidade, uma vez que setores mais rasos da montanha recebem mais aporte de matéria orgânica, e a processos dinâmicos locais que se originam da interação da montanha com o fluxo de massas de água (BOEHLERT & GENIN, 1987). Na área estudada de Alfa, a densidade de organismos bentônicos variou consideravelmente em termos geográficos (i.e. entre os dois perfis), bathimétricos e entre os distintos habitats, sugerindo heterogeneidade espacial nas condições biológicas.

As densidades máximas de organismos da megafauna bentônica na área estudada do platô de Alfa variaram de 0,75 indivíduos/m² nas áreas mais rasas (< 700 m) a menos de 0,05 indivíduos/m² nas áreas mais profundas (700 – 1200 m). Em comparação com valores reportados para análises de perfis de vídeo em outras montanhas submarinas do planeta (Tabela 15) observa-se certa similaridade com aquelas montanhas localizadas no Pacífico Sudoeste, cujos valores nas profundidades menores e maiores que 700 m são menores ou iguais aos encontrados na área estudada de Alfa. Segundo a classificação de biomas pelágicos a partir da concentração média clorofila-a (HARDMAN-MOUNTFORD et al., 2008) ambas as áreas encontram-se sob a influência de zonas de produtividade intermediária-baixa. Por
outro lado quando a área estudada é comparada a montanhas do Pacífico Norte, os valores tendem a ser menores, considerando que estas montanhas são ainda mais profundas que Alfa (800 – 3289 m). Esta diferença é mais acentuada na comparação com as montanhas Davidson e Pioneer, ambas próximas à costa da Califórnia e sob a influência de zonas de alta produtividade em superfície, devido a ressurgência costeira (LUNDSTEN, 2009; MCCLAIN et al., 2010). Também cabe citar que o guyot Horizon e a Elevação Magellan, ainda que sob a influência em superfície de águas pouco produtivas, tem reportadas densidades maiores de organismos da megafauna do que nas áreas estudadas de Alfa a mais de 1400 m.

A densidade da megafauna bentônica variou geograficamente nas áreas estudadas do platô de Alfa sendo consideravelmente maior na porção noroeste (perfil 6K1338) e muito baixa na porção sudeste (perfil 6K1339). Também foi superior em profundidades menores que 700 m, e preferencialmente na borda da parede norte da depressão central de Alfa e platô adjacente, onde o habitat predominante foi formado por substrato duro com rocha de origem carbonática (habitat 4). Este padrão de heterogeneidade espacial foi idêntico ao reportado por Perez et al., (submetido) no estudo da densidade de peixes presentes nos dois perfis aqui analisados, e, assim como sugerido por esses autores, remete ao potencial efeito de processos específicos de concentração de matéria orgânica na região noroeste de Alfa, associados a profundidade, topografia, composição de habitats e regime de correntes.

O platô carbonático (600 – 700 m), pela maior proximidade ao epipelagial, foi o que possivelmente reuniu as melhores condições de assentamento, sobrevivência e crescimento dos organismos bentônicos e sua densidade superou em muito os habitats mais profundos de Alfa. Esta diferença de densidade entre estratos batimétricos foi também marcada em outras montanhas (Tabela 15), como por exemplo no guyot Horizon (KAUFMANN et al., 1989) e na Elevação Lord Howe (WILLIAMS, 2011 B). Contudo a profundidade apenas não explicou a variabilidade espacial da abundância em Alfa, uma vez que nas áreas mais profundas (900 – 1200 m) presentes em ambos os perfis, as densidades ainda diferiram, sendo maiores no perfil 6K1338, padrão novamente observado entre os peixes (PEREZ et al., submetido). Um elemento plausível causador desse padrão espacial seria a presença de processos biofísicos específicos na porção noroeste de Alfa, não ocorrentes na porção sudeste. Estes processos estariam associados a influência do fluxo de correntes profundas, notadamente presente (mas não mensuradas) sobretudo na porção noroeste de Alfa.
Tabela 15. Densidades máximas de organismos da megafauna bentônica no platô de Alfa comparadas com valores reportados para análises de perfis de vídeo em outras montanhas submarinas do planeta.

<table>
<thead>
<tr>
<th>Oceano Atlântico Sudoeste</th>
<th>Oceano Pacífico Sudoeste</th>
<th>Oceano Pacífico Norte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classificação de Clorofila-a: Baixa-Intermediária</td>
<td>Baixa</td>
<td>Baixa-Intermediária</td>
</tr>
<tr>
<td>Prof. (m)</td>
<td>Habitat</td>
<td>Ind/m²</td>
</tr>
<tr>
<td>735-632</td>
<td>4</td>
<td>0,75</td>
</tr>
<tr>
<td>749-735</td>
<td>3</td>
<td>0,20</td>
</tr>
<tr>
<td>911-872</td>
<td>6</td>
<td>0,01</td>
</tr>
<tr>
<td>921-911</td>
<td>5</td>
<td>0,01</td>
</tr>
<tr>
<td>1233-1047</td>
<td>1</td>
<td>0,05</td>
</tr>
</tbody>
</table>
Ao longo do perfil realizado nesta porção, os regimes de corrente foram aparentemente mais intensos e regulares, causando a escassez de sedimentos e favorecendo a incidência de esponjas ramificadas e outros organismos suspensívoros regularmente orientadas (HAJDU et al., submetido; PEREZ et al., submetido; MASTELLA, 2014). Infere-se que esta porção de Alfa receba a influência de correntes profundas ao se opor diretamente contra o fluxo regular (de norte a sul) da Água Profunda do Atlântico Norte, efeito este possivelmente atenuado nas porções centrais e ao sul de Alfa, onde se realizou o perfil 6K1339 (PEREZ et al., 2012; MOZOROV, 2010). Este processo teria a capacidade de intensificar a advecção e concentração de matéria orgânica particulada e zooplâncton sobre a porção noroeste da ERG, favorecendo o crescimento de organismos suspensívoros da epifauna (SPONGAULE & LABARBERA, 1991). Esta hipótese é apoiada por Boehlert & Genin (1987) que afirmam que “o regime de corrente induzido pela topografia é o fator-chave na determinação da abundância de suspensívoros em montanhas submarinas de fundo duro”. Segundo esses autores além da advecção, há a aceleração do fluxo da corrente nos flancos das montanhas submarinas em direção ao cume, e uma desaceleração desse fluxo uma vez que se atinge o cume especialmente se este é plano. No caso de Alfa, devido a sua grande extensão, é plausível que algumas regiões, mais periféricas e na porção noroeste, sejam mais sujeitas ao fluxo acelerado de correntes do que outras no interior do platô e na porção sudeste. Além disso, a existência da depressão central deve causar um efeito de mudança/desaceleração do fluxo que favorece a disponibilidade de partículas em suspensão justamente ao longo da borda, o que justificaria a concentração de poríferos ramificados (HAJDU et al., submetido).

A diversidade da fauna visível nos perfis de vídeo analisados, revela uma elevada frequência de organismos epifaunais suspensívoros, além de peixes (PEREZ et al., submetido). Contudo, ao contrário de outras montanhas submarinas estudadas onde se encontram “jardins de coral” e inclusive formações recifais de corais profundos, em Alfa poríferos foram mais conspicuos e abundantes. De fato, a principal concentração de vida bentônica observada nos perfis de vídeo foi associada ao “jardim de esponjas” (HAJDU et al., submetido) formado pela concentração de Sarostegia oculata. Esta esponja tem crescimento ramificado e sustenta zoantídeos simbiontes em suas paredes mimetizando a função de um “coral”. A concentração dessa espécie esteve associada a presença de inúmeros morfotipos da megafauna bentônica além de peixes (PEREZ et al., submetido) caracterizando-a como espécie estruturante, i.e. formadora de habitat.
A determinação da riqueza de morfotipos associada a essa área e aos demais habitats foi limitada pelo escasso tempo observacional e as condições diferenciais de visibilidade das imagens. No entanto é possível afirmar que os habitats onde Sarostegia esteve presente também incluíram o maior número de morfotipos da fauna bentônica, em contraste com os habitats mais profundos. Em termos gerais a riqueza de morfotipos da megafauna bentónica observada nos dois perfis de Alfa foi relativamente alta, com um total de 172 morfotipos observados ao longo de 8 km percorridos, em paralelo ao relatado, por exemplo, em três montanhas submarinas do Pacífico NE onde foram observadas 202 espécies ao longo de 15 km percorridos (LUNDSTEN et al., 2009).

Quando os padrões de riqueza de morfotipos foram associados a sua abundância nos diferentes perfis e habitats, no entanto, a diversidade destes estratos mostrou-se sensível aos padrões diferenciais de equitatividade e dominância. Assim, os habitats com megafauna mais abundante, foram os menos diversos, o que se deve ao fato desses habitats apresentarem maiores níveis dominância, ou seja possuírem uma grande quantidade de indivíduos, porém poucos morfotipos envolvidos. Nesse sentido ressalta-se novamente os habitats 3 e 4 onde o morfotipo dominante foi Sarostegia oculata, que correspondeu a mais de 80% dos indivíduos visualizados nestes habitats, além de um organismo suspensívoros não identificado (8P35 – APENDICE A). Do lado oposto ressalta-se os habitats com megafauna menos abundante, na depressão central (habitat 1) e porção sudeste de Alfa (habitats 5 e 6), os quais foram mais diversos e mais equitativos. O mesmo padrão foi observado em Alfa com relação aos peixes, onde as áreas de maior abundância (habitat 4) apresentaram uma pronunciada dominância de duas espécies, o chaunacideo Chaunax sp. e o macrurídio Malacocephalus okamurai (PEREZ et al., submetido). Infere-se a partir desses resultados que as áreas de maior aporte de energia de Alfa, e que tendem a sustentar maior densidades de organismos, são dominadas por poucos organismos suspensívoros e peixes capazes de melhor aproveitarem o provimento de alimento em suspensão proporcionado pelo intenso fluxo de correntes. Por outro lado nas áreas de menor abundância e de menor dinâmica, a diversificação de morfotipos foi mais acentuada.

Diversos autores afirmam que a composição da diversidade bentônica em montanhas submarinas é estratificada em profundidade, o que pode ser um reflexo dos gradientes ambientais associados a profundidade como a temperatura, concentração de oxigênio, disponibilidade de alimento e pressão (por exemplo: CLARK et al., 2007, SAMADI et al., 2007). Todas as análises referentes à associação de morfotipos e diversidade-beta no platô de Alfa apontaram para um padrão geral de acentuada mudança em resposta a diversidade de
habitats e profundidade. Ainda que possivelmente afetada pela diferenciação visual de morfotipos, estes resultados corroboram aqueles já reportados para peixes em Alfa, e que demonstram a heterogeneidade espacial de associações de morfotipos em escala de “meso-habitat” (10 m – 1 km, ZEPPILLI et al., 2015), bem como uma acentuada substituição de morfotipos entre habitats (diversidade-beta). Alterações na composição de espécies tendem a ser contínuas ao longo do gradiente batimétrico nas regiões baciais (CAIRNS, 2005), mas alterações mais drásticas podem ocorrer em função de mudanças na topografia e no regime de correntes, os quais determinam os regimes de sedimentação e disponibilidade de alimento (REX & ETTER, 2010). Nas áreas exploradas de Alfa ficou evidenciado que tais mudanças drásticas de habitats estiveram relacionadas às mudanças também drásticas na composição de morfotipos de megafauna bentônica, incluindo uma considerável incidência de morfotipos “endêmicos” de alguns habitats. McClain et al. (2010) reportam que a diversidade e a densidade da megafauna bentônica não foram afetadas pelo gradiente batimétrico na montanha Davidson, ao largo da costa da Califórnia, o que possivelmente se relaciona com o elevado suprimento de alimento oriundo da produção em superfície. Por outro lado, estes autores demonstraram taxas de substituição de espécies (diversidade beta) acima de 50% a cada 1500 m. Assim como no caso da densidade, a profundidade em Alfa foi insuficiente para explicar a substituição de morfotipos, e a diversidade de habitats se apresentou como elemento mais importante. Em diferentes grupos da fauna bentônica profunda essa importância tem sido confirmada (ZEPPILLI et al., 2015).

5.2 SENSIBILIDADE DAS COMUNIDADES À EXPLORAÇÃO GEOLÓGICA

As comunidades biológicas nas montanhas submarinas têm enfrentado uma série de ameaças provenientes de atividades humanas. As mais conhecidas advêm da pesca, especialmente a pesca de arrasto, muito embora, nos últimos anos, a perspectiva de exploração comercial dos recursos minerais tenha se apresentado como uma ameaça futura relevante (CLARK et al., 2007; RAMIREZ-LLODRA et al., 2011). Em montanhas submarinas o impacto humano pode ser mais grave do que em habitats da margem continental onde as comunidades e atividades humanas são mais dispersas.

O mar profundo é de interesse para a exploração de petróleo e gás, e para mineração de nódulos de manganês, CFRCs e sulfetos polimetálicos (GLOVER et al. 2003). As
montanhas submarinas podem ter depósitos espessos de CFRCs (HEIN et al., 2013). Os efeitos da mineração são incertos porque poucos estudos foram realizados, mas a perturbação física direta e as plumas de sedimentos seriam semelhantes e potencialmente maiores do que os efeitos de arrasto (AMANN, 1993, ANHERT & BOROWSKI, 2000; VAN DOVER, 2007). Serão necessários controles cuidadosos para restringir o impacto na fauna bentônica de montanhas submarinas, especialmente aquelas com comunidades endêmicas (CLARK et al., 2007). Atualmente, esses cuidados fazem parte das condições de licenciamento de “exploração” outorgadas pela ISBA em águas internacionais (ISBA, 2012), porém têm-se argumentado que, em face ao crescente conhecimento sobre a fragilidade desses ambientes, essas condições devem ser aprimoradas (WEDDING et al., 2015).

O impacto mais claro da mineração submarina será a destruição do habitat e a remoção direta e perda da comunidade de substrato duro, juntamente com a crosta rica em cobalto, em áreas que serão mineradas (EPRS, 2015). O processo de extração das crostas e transporte para a superfície também presumivelmente libertará sedimentos e espécies metálicas em porções adjacentes da montanha submarina e na coluna de água. Ao considerar esses impactos, a questão-chave é o risco de que a mineração conduza a modificação substancial de comunidades, alterando seu funcionamento como ecossistema, e a extinção regional ou global de uma parte da fauna afetada. A fauna bentônica particularmente das montanhas submarinas pode conter uma proporção de espécies endêmicas com distribuições localizadas, o que aumenta consideravelmente este risco (KOSLOW, 2007). Além disso, deve-se considerar a possibilidade de recuperação destes habitats e comunidades (resiliência), que, segundo o conhecimento generalizado sobre a vida no mar profundo, é incerta e certamente prolongada. Iniciativas voltadas a avaliação do risco de atividades associadas à mineração de CFRCs causarem efeitos significativos aos ecossistemas das montanhas submarinas requerem informações sobre a escala da operação da mineração e informações sobre a estrutura e funcionamento das comunidades que habitam os locais mais diretamente afetados.

Estas informações ainda são incertas, uma vez que apenas licenças de exploração foram outorgadas para as áreas com depósitos de CFRCs, e sabe-se pouco sobre como seriam as potenciais operações de extração comercial destas crostas uma vez que estas dependem do desenvolvimento de tecnologias de mineração (EPRS, 2015). Nesse sentido qualquer ensaio realista sobre os referidos impactos necessariamente deve levar em consideração as potenciais ameaças oferecidas pela realização das atividades de exploração das áreas licenciadas, ou
seja, que envolvem o uso de amostradores biológicos e geológicos com contato sobre os ambientes bentônicos. O método aqui proposto teve, nesse sentido, o objetivo de inferir quais áreas, dentro de um espaço visualizado pelos perfis de vídeo, teriam maior ou menor vulnerabilidade às atividades exploratórias. Como a quantificação da vulnerabilidade derivou de critérios onde se dimensionaram os potenciais efeitos dessas atividades (classificando-se em baixo, médio e alto), o método reflete o risco de efeitos negativos sobre as comunidades biológicas e nesse sentido, é uma “análise de risco” adaptada a exploração de CFRCs (HOBDAY et al., 2007). Trata-se de uma metodologia piloto sem pretensão de julgamento do de áreas sensíveis ao plano de exploração de Alfa, neste momento, mas cujo desempenho, considerando os elementos disponíveis nas imagens de vídeo, poderia representar um ponto de partida para um método de avaliação de impacto de todo plano de exploração, a ser executado nos próximos dois anos, bem como de uma eventual exploração comercial do recurso.

Um ponto central desse tipo de análise é que os valores de vulnerabilidade são relativos ao universo de casos disponíveis, ou seja, foi possível classificar o trecho mais/menos vulnerável entre todos os trechos visualizados, mas esse valor não pode ser usado para comparações de áreas não cobertas pelos perfis (VISINTIN, 2015). Porém, dentro desse universo, o método deveria diferenciar claramente trechos relativamente mais ou menos vulneráveis às atividades de exploração. Desta forma, pode-se concluir que a classificação de trechos observados de acordo com a sua vulnerabilidade foi coerente com os atributos visualizados e capturados pelos critérios de “resiliência” e “susceptibilidade”. Por exemplo, identificando trechos de elevada presença de megafauna bentônica, porém, de baixa acessibilidade a amostradores de fundo, devido a topografia íngreme e acidentada, como áreas menos vulneráveis. Por outro lado, trechos de maior vulnerabilidade estiveram associados e locais planos, rasos, com pavimentos de rochas recobertas por CFRCs e habitadas por diversa epífauna suspensívora formadora de habitats (e.g. Sarostegia). Numa escala abrangente, a aplicação deste método, aprimorado, poderia ajudar a identificar elementos centrais da gestão do uso das áreas requisitadas, por exemplo, a proposição de áreas-referência de impacto (impact reference zones) e áreas-referência de preservação (preservation reference zones) eventualmente requisitadas aos contratantes pela ISBA (ISBA, 2012). As primeiras são áreas representativas dos habitats explorados e que são reservadas como controle, ou seja, para que se possa evidenciar potenciais mudanças nas comunidades das áreas sujeitas às atividades de exploração. As áreas-referência de preservação são áreas onde não deverá ser permitida
qualquer atividade de mineração, como forma de garantir que uma parcela representativa e estável dos habitats e biodiversidade da região explorada permaneçam intocados (ISBA, 2012).

Deve-se destacar que a análise aqui proposta, assim como outras aplicadas a diferentes fins (HOBDAY et al., 2017), carrega uma elevada carga de subjetividade, tanto na definição dos critérios como em sua valoração dentro da análise. Nesse sentido, ao menos em duas ocasiões, buscaram-se opiniões independentes de cientistas da área de estudo (ecologia) para (a) compor critérios comumente aceitáveis em ecologia e (b) atribuir pesos a estes critérios de acordo com o sentimento pessoal de sua relevância na identificação de riscos ambientais. Em particular, este último procedimento se mostrou valioso uma vez que, comparativamente, a aplicação dos pesos não modificou significativamente o “mapa” de áreas vulneráveis, o que pode ser avaliado como indicador de “robustez” do método.
6. CONCLUSÕES

- As comunidades de megafauna bentônica descritas a partir dos perfis de vídeos realizados em duas localidades de Alfa, apresentam elementos estruturais concordantes com aqueles comumente descritos para as montanhas submarinas oceânicas.

- No entanto, mais do que isso, essas comunidades apresentam heterogeneidade espacial coerente com a diversidade de habitats e processos localizados de concentração de matéria orgânica, possivelmente associados a profundidade e ao regime de correntes determinado pela topografia e extensão da ERG.

- Embora a área estudada seja ínfima em relação a extensão de Alfa, pode se concluir que o uso e a conservação dessa feição oceânica devem levar em consideração essa diversidade e não um único componente (habitat e/ou comunidade).

- Modelos semi-quantitativos baseados em “análises de risco” ambiental apresentam-se como alternativas robustas no contexto da avaliação futura dos riscos para exploração e até mesmo explotação da área. De forma geral, essa ferramenta busca medidas para maiores sucessos na preservação das comunidades da ERG.
REFERENCES BIBLIOGRÁFICAS

CLARKE, K. R., WARWICK, R.M. Change in marine communities: an approach to

CPRM. Application for approval of a plan of work for exploration to obtain a contract. Brasilia, BR. 2014.

ISBA. Regulations on prospecting and exploration for cobalt-rich ferromanganese crusts in the area, ISBA/18/A/11. 2012.

VAN DOVER C. L. The biological environment of polymetallic sulphides deposits, the potential impact of exploration and mining on this environment, and data required to establish environmental baselines in exploration areas. In Proceedings of the International Seabed Authority’s Workshop, ch. 7, pag. 169–83. 2007.

WHITE M., BASHMACHNIKOV I., ARÍSTEGUI J., MARTINS A. Physical processes and seamount productivity. in: Pitcher, T.J., Morato, T., Hart, P.J.B., Clark, M.R., Haggan, N.,

APÊNDICES

APÊNDICE A
Inventário dos morfotipos encontrados na Elevação do Rio Grande através dos perfis 6K1338, 6K1339 e YKDT157.

<table>
<thead>
<tr>
<th>PORIFERA</th>
<th>HEXACTINELLIDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>8P36</td>
<td></td>
</tr>
<tr>
<td>8P3</td>
<td></td>
</tr>
<tr>
<td>8P38</td>
<td></td>
</tr>
<tr>
<td>8P4</td>
<td></td>
</tr>
<tr>
<td>8P5</td>
<td></td>
</tr>
<tr>
<td>79P20</td>
<td></td>
</tr>
<tr>
<td>9P21</td>
<td></td>
</tr>
<tr>
<td>78P28</td>
<td></td>
</tr>
<tr>
<td>89P18</td>
<td></td>
</tr>
<tr>
<td>9P22</td>
<td></td>
</tr>
<tr>
<td>8P34</td>
<td></td>
</tr>
</tbody>
</table>

CLASSES
<table>
<thead>
<tr>
<th>CHORDATA</th>
<th>CNIDARIA</th>
<th>ANTHOZOA</th>
</tr>
</thead>
<tbody>
<tr>
<td>8P15</td>
<td>89P17</td>
<td>8P19</td>
</tr>
<tr>
<td>9P24</td>
<td>9P25</td>
<td>9P26</td>
</tr>
<tr>
<td>9P27</td>
<td>7P16</td>
<td></td>
</tr>
<tr>
<td>8O1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>789C1</td>
<td>89C2</td>
<td>8C39</td>
</tr>
<tr>
<td>HYDROZOA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>8C3</td>
<td>8C4</td>
<td>89C17</td>
</tr>
<tr>
<td>9C24</td>
<td>8C5</td>
<td>78C6</td>
</tr>
<tr>
<td>89C7</td>
<td>8C43</td>
<td>8C8</td>
</tr>
<tr>
<td>8C41</td>
<td>8C42</td>
<td>8C16</td>
</tr>
<tr>
<td>8C9</td>
<td>8C10</td>
<td></td>
</tr>
<tr>
<td>CLASSES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9C27</td>
<td>9C28</td>
<td>9C29</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>9C30</td>
<td>9C32</td>
<td>7C33</td>
</tr>
<tr>
<td>9C34</td>
<td>7C35</td>
<td>9C36</td>
</tr>
<tr>
<td>9C37</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MOLLUSCA

GASTROPODA

<table>
<thead>
<tr>
<th>8M1</th>
<th>9M7</th>
</tr>
</thead>
</table>

BIVALVIA
<table>
<thead>
<tr>
<th>8M2</th>
<th>9M6</th>
<th>8M3</th>
</tr>
</thead>
<tbody>
<tr>
<td>8M5</td>
<td>8M9</td>
<td></td>
</tr>
</tbody>
</table>

CEPHALOPODA

<table>
<thead>
<tr>
<th>8M4</th>
</tr>
</thead>
</table>

ARTHROPODA

<table>
<thead>
<tr>
<th>CRUSTACEA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>89A1</th>
<th>8A2</th>
<th>89A3</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>8A19</th>
<th>8A4</th>
<th>8A5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>89A6</td>
<td>789A7</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>8A8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8A17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9A9</td>
<td></td>
<td>79A10</td>
</tr>
<tr>
<td>79A12</td>
<td></td>
<td>7A13</td>
</tr>
<tr>
<td>7A15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECHINODERMATA

ECHINOIDEA
<table>
<thead>
<tr>
<th>8E1</th>
<th>8E2</th>
<th>8E3</th>
</tr>
</thead>
<tbody>
<tr>
<td>89E11</td>
<td>79E12</td>
<td>79E18</td>
</tr>
<tr>
<td>8E31</td>
<td>8E32</td>
<td></td>
</tr>
</tbody>
</table>

ASTEROIDEA

<table>
<thead>
<tr>
<th>8E4</th>
<th>8E5</th>
<th>89E6</th>
</tr>
</thead>
<tbody>
<tr>
<td>9E13</td>
<td>9E14</td>
<td>9E15</td>
</tr>
<tr>
<td>CRINOIDEA</td>
<td>HOLOTHUROIDEA</td>
<td>OPHIUROIDEA</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>89E16</td>
<td>9E27</td>
<td>7E19</td>
</tr>
<tr>
<td>9E33</td>
<td>9E28</td>
<td>9E30</td>
</tr>
<tr>
<td>8E7</td>
<td>7E20</td>
<td>7E21</td>
</tr>
<tr>
<td>7E22</td>
<td>7E23</td>
<td>7E24</td>
</tr>
<tr>
<td>7E25</td>
<td>8E26</td>
<td>7M8</td>
</tr>
<tr>
<td>8E8</td>
<td>89E9</td>
<td>8E10</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>9E17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VESTÍGIOS DE BIOTURBAÇÃO

<table>
<thead>
<tr>
<th>8B1</th>
<th>78B2</th>
<th>78B3</th>
</tr>
</thead>
<tbody>
<tr>
<td>78B5</td>
<td>79B4</td>
<td>9B10</td>
</tr>
<tr>
<td>7B6</td>
<td>7B7</td>
<td>7B8</td>
</tr>
<tr>
<td></td>
<td>7B9</td>
<td>8B11</td>
</tr>
<tr>
<td>----</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>NÃO IDENTIFICADO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7N1</td>
<td>9N2</td>
<td>9N3</td>
</tr>
<tr>
<td>9N4</td>
<td>9N5</td>
<td>9N6</td>
</tr>
<tr>
<td>9N7</td>
<td>8N8</td>
<td>8N9</td>
</tr>
<tr>
<td>8N10</td>
<td>8N11</td>
<td>8N12</td>
</tr>
</tbody>
</table>